Question #114948
Find the equation of the normal to the solid 2x^2 −y^2 +8z^2 = 11 at a point where it intersects the line x−3 = z =(y+1)/2.
1
Expert's answer
2020-05-21T15:13:20-0400

The equation of the normal:

xx0Fx(M0)=yy0Fy(M0)=zz0Fz(M0)\frac{x-x_0}{F'_x(M_0)}=\frac{y-y_0}{F'_y(M_0)}=\frac{z-z_0}{F'_z(M_0)}

Fx=4xF'_x=4x

Fy=2yF'_y=-2y

Fz=16zF'_z=16z

Then:

\frac{}{} xx04x0=yy02y0=zz016z0\frac {x-x_0}{4x_0}=\frac {y-y_0}{-2y_0}=\frac {z-z_0}{16z_0}

4x0=x1x04x_0=x_1-x_0

2y0=y1y0-2y_0=y_1-y_0

16z0=z1z016z_0=z_1-z_0

Where (x1,y1,z1)(x_1,y_1,z_1) is the point of intersection of the normal with the given line.

We have:

x1=5x0,y1=y0,z1=15z0x_1=5x_0, y_1=-y_0, z_1=15z_0

So:

5x03=15z0=y0+125x_0-3=15z_0=\frac {-y_0+1}{2}

2x02y02+8z02=112x_0^2-y_0^2+8z_0^2=11

y0=12(5x03),z0=5x0315y_0=1-2(5x_0-3), z_0=\frac {5x_0-3}{15}

2x02(12(5x03))2+8(5x0315)2=112x_0^2-(1-2(5x_0-3))^2+8(\frac {5x_0-3}{15})^2=11

2x02(14(5x03)+4(25x0230x0+9))+8225(25x0230x0+9)=112x_0^2-(1-4(5x_0-3)+4(25x_0^2-30x_0+9))+\frac {8}{225}(25x_0^2-30x_0+9)=11

We have two cases:

x0=1.34,y0=6.4,z0=0.25x_0=1.34, y_0=-6.4, z_0=0.25

or

x0=0.08,y0=6.2,z0=0.17x_0=0.08, y_0=6.2, z_0=-0.17

Answer:

x1.345.36=y+6.412.8=z0.254\frac {x-1.34}{5.36}=\frac {y+6.4}{12.8}=\frac {z-0.25}{4}

or

x0.080.32=y6.212.4=z+0.172.72\frac {x-0.08}{0.32}=\frac {y-6.2}{-12.4}=\frac {z+0.17}{-2.72}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS