The equation of the normal:
"\\frac{x-x_0}{F'_x(M_0)}=\\frac{y-y_0}{F'_y(M_0)}=\\frac{z-z_0}{F'_z(M_0)}"
"F'_x=4x"
"F'_y=-2y"
"F'_z=16z"
Then:
"\\frac{}{}" "\\frac {x-x_0}{4x_0}=\\frac {y-y_0}{-2y_0}=\\frac {z-z_0}{16z_0}"
"4x_0=x_1-x_0"
"-2y_0=y_1-y_0"
"16z_0=z_1-z_0"
Where "(x_1,y_1,z_1)" is the point of intersection of the normal with the given line.
We have:
"x_1=5x_0, y_1=-y_0, z_1=15z_0"
So:
"5x_0-3=15z_0=\\frac {-y_0+1}{2}"
"2x_0^2-y_0^2+8z_0^2=11"
"y_0=1-2(5x_0-3), z_0=\\frac {5x_0-3}{15}"
"2x_0^2-(1-2(5x_0-3))^2+8(\\frac {5x_0-3}{15})^2=11"
"2x_0^2-(1-4(5x_0-3)+4(25x_0^2-30x_0+9))+\\frac {8}{225}(25x_0^2-30x_0+9)=11"
We have two cases:
"x_0=1.34, y_0=-6.4, z_0=0.25"
or
"x_0=0.08, y_0=6.2, z_0=-0.17"
Answer:
"\\frac {x-1.34}{5.36}=\\frac {y+6.4}{12.8}=\\frac {z-0.25}{4}"
or
"\\frac {x-0.08}{0.32}=\\frac {y-6.2}{-12.4}=\\frac {z+0.17}{-2.72}"
Comments
Leave a comment