The equation of the normal:
Fx′(M0)x−x0=Fy′(M0)y−y0=Fz′(M0)z−z0
Fx′=4x
Fy′=−2y
Fz′=16z
Then:
4x0x−x0=−2y0y−y0=16z0z−z0
4x0=x1−x0
−2y0=y1−y0
16z0=z1−z0
Where (x1,y1,z1) is the point of intersection of the normal with the given line.
We have:
x1=5x0,y1=−y0,z1=15z0
So:
5x0−3=15z0=2−y0+1
2x02−y02+8z02=11
y0=1−2(5x0−3),z0=155x0−3
2x02−(1−2(5x0−3))2+8(155x0−3)2=11
2x02−(1−4(5x0−3)+4(25x02−30x0+9))+2258(25x02−30x0+9)=11
We have two cases:
x0=1.34,y0=−6.4,z0=0.25
or
x0=0.08,y0=6.2,z0=−0.17
Answer:
5.36x−1.34=12.8y+6.4=4z−0.25
or
0.32x−0.08=−12.4y−6.2=−2.72z+0.17
Comments