x23−y24=z\dfrac{x^2}{3}-\dfrac{y^2}{4}=z3x2−4y2=z
x+2y−z=6x+2y−z=6x+2y−z=6
We will find z
z=x+2y−6z=x+2y−6z=x+2y−6
4x2−3y2=12(x+2y−6)4 x^ 2 − 3 y^ 2 =12(x+2y−6)4x2−3y2=12(x+2y−6)
4(x2−3x)−3(y2+8y)=−724(x^ 2 −3x)−3(y^ 2 +8y)=−724(x2−3x)−3(y2+8y)=−72
4(x−32)2−3(y+4)2=−72+9−48=−1114(x−\frac{3}{2}) ^2 −3(y+4) ^2 =−72+9−48=−1114(x−23)2−3(y+4)2=−72+9−48=−111
4(x−32)2111−3(y+4)2111=−14 \frac{ (x−\frac 32 )^2}{111} − 3 \frac{ (y+4)^ 2}{111} =−14111(x−23)2−3111(y+4)2=−1
(x−32)21114−(y+4)21113=−1\frac{ (x−\frac 32 )^2}{\frac{111}{4}} − \frac{ (y+4)^ 2}{\frac{111}{3}} =−14111(x−23)2−3111(y+4)2=−1
This is a equation of conjugated hyperbola
center(32,−4)center( \frac 32 ,−4)center(23,−4)
semi−axes=
a=111/4,b=111/3a= \sqrt{ 111/4 } ,b= \sqrt{ 111/3 } a=111/4,b=111/3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments