Question #114938
Find the nature of the planar section of the conicoid x^2/3 −y^2/4 = z by the plane x+2y−z = 6
1
Expert's answer
2020-05-18T00:57:30-0400

x23y24=z\dfrac{x^2}{3}-\dfrac{y^2}{4}=z


x+2yz=6x+2y−z=6

We will find z

z=x+2y6z=x+2y−6


4x23y2=12(x+2y6)4 x^ 2 ​ − 3 y^ 2 ​ =12(x+2y−6)

4(x23x)3(y2+8y)=724(x^ 2 −3x)−3(y^ 2 +8y)=−72


4(x32)23(y+4)2=72+948=1114(x−\frac{3}{2}) ^2 −3(y+4) ^2 =−72+9−48=−111


4(x32)21113(y+4)2111=14 \frac{ ​ (x−\frac 32 ​ )^2}{111} ​ − 3 \frac{ ​ (y+4)^ 2}{111} ​ =−1


(x32)21114(y+4)21113=1\frac{ ​ (x−\frac 32 ​ )^2}{\frac{111}{4}} ​ − \frac{ ​ (y+4)^ 2}{\frac{111}{3}} ​ =−1


This is a equation of conjugated hyperbola

center(32,4)center( \frac 32 ​ ,−4)

semiaxes=

a=111/4,b=111/3a= \sqrt{ 111/4 ​} ​ ,b= \sqrt{ 111/3 ​ } ​


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS