"\\dfrac{x^2}{3}-\\dfrac{y^2}{4}=z"
"x+2y\u2212z=6"
We will find z
"z=x+2y\u22126"
"4\n\nx^\n2\n\u200b\n\n\u2212\n3\n\ny^\n2\n\u200b\n\n=12(x+2y\u22126)"
"4(x^\n2\n\u22123x)\u22123(y^\n2\n+8y)=\u221272"
"4(x\u2212\\frac{3}{2})\n^2\n\u22123(y+4)\n^2\n=\u221272+9\u221248=\u2212111"
"4\n\n\\frac{\n\u200b\n\n\n(x\u2212\\frac\n\n\n32\n\u200b\n\n)^2}{111}\n\u200b\n\n\u2212\n3\n\\frac{\n\n\u200b\n\n\n(y+4)^\n2}{111}\n\u200b\n\n=\u22121"
"\\frac{\n\u200b\n\n\n(x\u2212\\frac\n\n\n32\n\u200b\n\n)^2}{\\frac{111}{4}}\n\u200b\n\n\u2212\n\n\\frac{\n\n\u200b\n\n\n(y+4)^\n2}{\\frac{111}{3}}\n\u200b\n\n=\u22121"
This is a equation of conjugated hyperbola
"center(\n\\frac\n\n32\n\u200b\n\n,\u22124)"
semi−axes=
"a=\n\\sqrt{\n\n111\/4\n\u200b}\n\n\n\u200b\n\n,b=\n\\sqrt{\n\n111\/3\n\u200b\n\n}\n\u200b"
Comments
Leave a comment