Solution.
"x^2+y^2+4x-2y+3=0;"
i)the origin is shifted at (2,−1)
"x'=x+2; y'=y-1;"
"(x+2)^2+(y-1)^2+4(x+2)-2(y-1)+3=0;"
"x^2+4x+4+y^2-2y+1+4x+8-2y+2+3=0;"
"x^2+y^2+8x-4y+18=0;"
the axes are rotated through 45o;
"x'=xcos\\alpha-ysin\\alpha; y'=xsin\\alpha+ycos\\alpha;"
"x'=x\\dfrac{\\sqrt{2}}{2}-y\\dfrac{\\sqrt{2}}{2}=\\dfrac{\\sqrt{2}}{2}(x-y);"
"y'=x\\dfrac{\\sqrt{2}}{2}+y\\dfrac{\\sqrt{2}}{2}=\\dfrac{\\sqrt{2}}{2}(x+y);"
"\\dfrac{1}{2}(x-y)^2+\\dfrac{1}{2}(x+y)^2+4\\sqrt{2}(x-y)-2\\sqrt{2}(x+y)+18=0;"
"\\dfrac{1}{2}x^2-xy+\\dfrac{1}{2}y^2+\\dfrac{1}{2}x^2+xy+\\dfrac{1}{2}y^2+4\\sqrt{2}x-4\\sqrt{2}y-\n2\\sqrt{2}x-2\\sqrt{2}y+18=0;"
"x^2+y^2+2\\sqrt{2}x-6\\sqrt{2}y+18=0;"
ii)the axes are rotated through 45o;
"x'=xcos\\alpha-ysin\\alpha; y'=xsin\\alpha+ycos\\alpha;"
"x'=x\\dfrac{\\sqrt{2}}{2}-y\\dfrac{\\sqrt{2}}{2}=\\dfrac{\\sqrt{2}}{2}(x-y);"
"y'=x\\dfrac{\\sqrt{2}}{2}+y\\dfrac{\\sqrt{2}}{2}=\\dfrac{\\sqrt{2}}{2}(x+y);"
"\\dfrac{1}{2}(x-y)^2+\\dfrac{1}{2}(x+y)^2+2\\sqrt{2}(x-y)-\\sqrt{2}(x+y)+3=0;"
"\\dfrac{1}{2}x^2-xy+\\dfrac{1}{2}y^2+\\dfrac{1}{2}x^2+xy+\\dfrac{1}{2}y^2+2\\sqrt{2}x-2\\sqrt{2}y-\n\\sqrt{2}x-\\sqrt{2}y+3=0;"
"x^2+y^2+\\sqrt{2}x-3\\sqrt{2}y+3=0;"
the origin is shifted at (2,−1)
"x'=x+2; y'=y-1;"
"(x+2)^2+(y-1)^2+\\sqrt{2}(x+2)-3\\sqrt{2}(y-1)+3=0;"
"x^2+4x+4+y^2-2y+1+\\sqrt{2}x+2\\sqrt{2}-3\\sqrt{2}y+3\\sqrt{2}+3=0;"
"x^2+y^2+x(4+\\sqrt{2})-y(2+3\\sqrt{2})+8+5\\sqrt{2}=0;"
Answer: i)"x^2+y^2+2\\sqrt{2}x-6\\sqrt{2}y+18=0;"
ii)"x^2+y^2+x(4+\\sqrt{2})-y(2+3\\sqrt{2})+8+5\\sqrt{2}=0;"
the equations i) and ii) are different.
Comments
Leave a comment