We have "u\\times v=\\begin{vmatrix}\nu_1&u_2&u_3\\\\\nv_1&v_2&v_3\\\\\ne_1&e_2&e_3\n\\end{vmatrix}="
"=\\left(\\begin{vmatrix}\nu_2&u_3\\\\\nv_2&v_3\\\\\n\\end{vmatrix},-\\begin{vmatrix}\nu_1&u_3\\\\\nv_1&v_3\\\\\n\\end{vmatrix},\\begin{vmatrix}\nu_1&u_2\\\\\nv_1&v_2\\\\\n\\end{vmatrix}\\right)"
Then "(u,u\\times v)=u_1\\begin{vmatrix}\nu_2&u_3\\\\\nv_2&v_3\\\\\n\\end{vmatrix}-u_2\\begin{vmatrix}\nu_1&u_3\\\\\nv_1&v_3\\\\\n\\end{vmatrix}+u_3\\begin{vmatrix}\nu_1&u_2\\\\\nv_1&v_2\\\\\n\\end{vmatrix}="
"=\\begin{vmatrix}\nu_1&u_2&u_3\\\\\nv_1&v_2&v_3\\\\\nu_1&u_2&u_3\n\\end{vmatrix}=0" and "(v,u\\times v)=v_1\\begin{vmatrix}\nu_2&u_3\\\\\nv_2&v_3\\\\\n\\end{vmatrix}-v_2\\begin{vmatrix}\nu_1&u_3\\\\\nv_1&v_3\\\\\n\\end{vmatrix}+v_3\\begin{vmatrix}\nu_1&u_2\\\\\nv_1&v_2\\\\\n\\end{vmatrix}="
"=\\begin{vmatrix}\nu_1&u_2&u_3\\\\\nv_1&v_2&v_3\\\\\nv_1&v_2&v_3\n\\end{vmatrix}=0"
Comments
Leave a comment