"\\frac{x-1}{2}=\\frac{y-3}{5}=\\frac{z+1}{3};M_1(1;-1;4);\\\\x=1+2\\times t;\\\\y=3+5\\times t;\\\\z=-1+3\\times t;\\\\p(M_1;l)=\\frac{(\\overline{M_0M_1};\\overline{p})}{|\\overline{p}|};\\overline{M_0M_1}=\\{0;-4;5\\};\\\\(\\overline{MM_1};\\overline{p})=\\begin{vmatrix}-4\n & 5 \\\\\n 5 &3 \n\\end{vmatrix};\\begin{vmatrix}\n 0& 5 \\\\\n 2 & 3\n\\end{vmatrix};\\begin{vmatrix}\n 0 & -4 \\\\\n 2 & 5\n\\end{vmatrix};\\\\(\\overline{MM_1};\\overline{p})=\\begin{Bmatrix}\n -37; & -10; & -8\\\\\n \n\\end{Bmatrix};\\\\p(M_0;l)=\\frac{\\sqrt{37^2+10^2+8^2}}{\\sqrt{2^2+5^2+3^2}}=\\sqrt{\\frac{1533}{38}};\\\\p(M;l)=\\frac{|\\overline{M_0M};\\overline{p|}}{|p|}=\\sqrt{\\frac{1533}{38}}\\times (\\overline{M_0M})=\\\\=\\begin{Bmatrix}\n x; & y+4;&z-5 \\\\\n \n\\end{Bmatrix};p=\\begin{Bmatrix}\n 2; & 5; &3\\\\\n \n\\end{Bmatrix};\\\\(\\overline{M_0M}; \\overline p) =\\begin{vmatrix}\n y+4 & z-5 \\\\\n 5 & 3\n\\end{vmatrix};\\begin{vmatrix}\n x & z-5 \\\\\n 2 & 3\n\\end{vmatrix};\\\\\\begin{vmatrix}\n x & y+4 \\\\\n 2 & 5\n\\end{vmatrix}=\\\\=3\\times y-5\\times z+37;3\\times x-2\\times z+10;\\\\5\\times x-2\\times y-8;\\\\|\\overline{M_0M}; \\overline p|=\\sqrt{(3\\times y-5\\times z+37)^2};\\\\\\sqrt{(3\\times x-2\\times z+10)^2;(5\\times x-2\\times y-8)^2}=\\\\=\\sqrt{34\\times x^2+9\\times y^2-45\\times y\\times z-18\\times x\\times z-}\\\\\\sqrt{-30\\times x\\times y+222\\times y+140\\times x+1533}\\\\34\\times x^2+9\\times y^2-45\\times y\\times z-18\\times x\\times z-\\\\-30\\times x\\times y+222\\times y+140\\times x=0"The last expression is the equation of the desired cylinder
Comments
Leave a comment