"d=\\frac{|Ax_0+By_0+C|}{\\sqrt{A^2+B^2}}" - formula to find distance between some point "M(x_0,y_0)" and a line "Ax+By+C=0"
We can use it to solve our first problem.
a)
Let "x=0", then "3\\cdot 0-4y+3=0 \\iff y=\\frac{3}{4}"
So point "M(0,\\frac{3}{4})" belong to the first line.
"A_2=6, B_2=-8, C_2=7" - coeffiсients of second line.
"d=\\frac{|6\\cdot 0+(-8)\\cdot\\frac{3}{4}+7|}{\\sqrt{6^2+(-8)^2}}=\\frac{|1|}{\\sqrt{100}}=\\frac{1}{10}"
(Lines don't intersect because "\\frac{A_1}{A_2}=\\frac{B_1}{B_2}\\neq\\frac{\u0421_1}{\u0421_2}". They are parallel)
b) If two lines are perpendicular, their normal vectors are perpendicular too.
"\\vec {n_1}=\\{3;-4\\}" normal vector of first line.
"\\vec {n_3}=\\{a,b\\}" normal vector of perpendicular line
"\\vec{n_1}\\cdot\\vec{n_3}=3\\cdot a+(-4)\\cdot b=0" (scalar product )
Let "a=4," then "b=3"
So "\\vec{n_3}=\\{4,3\\}" (what means "A_3=4, B_3=3" )
"4\\cdot(-6)+3\\cdot4+C_3=0" (substitution of (-6, 4))
"C_3=12"
"4x+3y+12=0" - perpendicular line
c) We can use our first formula
"d=\\frac{|Ax_0+By_0+C|}{\\sqrt{A^2+B^2}}"
First line:
"d_1=\\frac{|3\\cdot(-6)+(-4)\\cdot4+3|}{\\sqrt{3^2+(-4)^2}}=\\frac{|-31|}{\\sqrt{25}}=\\frac{31}{5}=6.2"
"d_2=\\frac{|6\\cdot(-6)+(-8)\\cdot4+7|}{\\sqrt{6^2+(-8)^2}} =\\frac{|-61|}{\\sqrt{100}}=\\frac{61}{10}=6.1"
Comments
Leave a comment