Answer to Question #113765 in Analytic Geometry for randal

Question #113765
3x - 4y + 3 = 0
6x - 8y +7 = 0
a. Find the distance between the two lines.
b. Find the equation of the perpendicular line passing through. (-6,4)
c. Determine the distance of 2 given equations to point (-6.4)
1
Expert's answer
2020-05-08T19:17:01-0400

d=Ax0+By0+CA2+B2d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} - formula to find distance between some point M(x0,y0)M(x_0,y_0) and a line Ax+By+C=0Ax+By+C=0

We can use it to solve our first problem.


a)

Let x=0x=0, then 304y+3=0    y=343\cdot 0-4y+3=0 \iff y=\frac{3}{4}

So point M(0,34)M(0,\frac{3}{4}) belong to the first line.

A2=6,B2=8,C2=7A_2=6, B_2=-8, C_2=7 - coeffiсients of second line.

d=60+(8)34+762+(8)2=1100=110d=\frac{|6\cdot 0+(-8)\cdot\frac{3}{4}+7|}{\sqrt{6^2+(-8)^2}}=\frac{|1|}{\sqrt{100}}=\frac{1}{10}

(Lines don't intersect because A1A2=B1B2С1С2\frac{A_1}{A_2}=\frac{B_1}{B_2}\neq\frac{С_1}{С_2}. They are parallel)


b) If two lines are perpendicular, their normal vectors are perpendicular too.

n1={3;4}\vec {n_1}=\{3;-4\} normal vector of first line.

n3={a,b}\vec {n_3}=\{a,b\} normal vector of perpendicular line

n1n3=3a+(4)b=0\vec{n_1}\cdot\vec{n_3}=3\cdot a+(-4)\cdot b=0 (scalar product )

Let a=4,a=4, then b=3b=3

So n3={4,3}\vec{n_3}=\{4,3\} (what means A3=4,B3=3A_3=4, B_3=3 )

4(6)+34+C3=04\cdot(-6)+3\cdot4+C_3=0 (substitution of (-6, 4))

C3=12C_3=12

4x+3y+12=04x+3y+12=0 - perpendicular line


c) We can use our first formula

d=Ax0+By0+CA2+B2d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}

First line:

d1=3(6)+(4)4+332+(4)2=3125=315=6.2d_1=\frac{|3\cdot(-6)+(-4)\cdot4+3|}{\sqrt{3^2+(-4)^2}}=\frac{|-31|}{\sqrt{25}}=\frac{31}{5}=6.2

d2=6(6)+(8)4+762+(8)2=61100=6110=6.1d_2=\frac{|6\cdot(-6)+(-8)\cdot4+7|}{\sqrt{6^2+(-8)^2}} =\frac{|-61|}{\sqrt{100}}=\frac{61}{10}=6.1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment