Question #113764
3x + 8y = 4
(8, -9)
a. Find the equation of a line passing through the point given perpendicular to the line given.
b. Find the distance between the point and the line.
c. Find the equation of a line passing through the point (4, 3) parallel to the line given and its distance.
1
Expert's answer
2020-05-06T20:02:20-0400

a)3×x+8×y=4;y=43×x8=38×x+0.5;y=38×x+0.5;k=83;y=83×x+b=83×8+b;9=643+b;b=9643=273643=913;y=83×x913;3y=8×x91;8×x+3×y+91=0b)d=A×Mx+B×My+CA2+B2;d=3×8+8×(9)432+82=5273c)3×x+8×y4=0;k=k;y=38×x+b;3=38×4+b;b=4.5;y=38×x+4.5;3×x+8×y36=0;3×x+8×y36=0;3×x+8×y4=0;d=C2C1A2+B2=3273a)3\times x +8\times y=4; \\y=\frac{4-3\times x }{8}=-\frac{3}{8}\times x+0.5;\\y=-\frac{3}{8}\times x+0.5;\\k'=\frac{8}{3};y=\frac{8}{3}\times x+b=\frac{8}{3}\times 8+b;\\-9=\frac{64}{3}+b;b=-9-\frac{64}{3}=-\frac{27}{3}-\frac{64}{3}=-\frac{91}{3};\\y=\frac{8}{3}\times x-\frac{91}{3};3y=8\times x-91;\\-8\times x+3 \times y+91=0\\b)d=\frac{ |A\times M_x+B\times M_y+C|}{\sqrt{A^2+B^2}};d=\frac{ |3\times 8+8\times (-9)-4|}{\sqrt{3^2+8^2}}=\frac{52}{\sqrt73}\\c)3\times x+8\times y-4=0;k=k'';\\y=-\frac{3}{8}\times x+b;3=-\frac{3}{8}\times 4+b;b=4.5;\\y=-\frac{3}{8}\times x+4.5;\\3\times x +8\times y-36=0;\\3\times x +8\times y-36=0;\\3\times x +8\times y-4=0; |d|=\frac{|C_2-C_1}{\sqrt{A^2+B^2}}=\frac{32}{\sqrt73}

Answer:

8×x+3×y+91=0-8\times x+3 \times y+91=0 ;

5273\frac{52}{\sqrt73} ;

3×x+8×y36=03\times x +8\times y-36=0 ;

3273\frac{32}{\sqrt73}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS