For two mismatched lines to be parallel on the plane, it is necessary and sufficient that the direction vectors of the given lines be collinear, or the normal vectors of the given lines be colinear, or the direction vector of one line is perpendicular to the normal vector of the other line.On the plane is based on the collinearity of vectors or the condition of perpendicularity of two vectors. If
"l \n1\n\u200b\t\n \n\u200b\t\n =(l \n1x\n\u200b\t\n ,l \n1y\n\u200b\t\n ) and \\vec{l_2}=({l_{2x},l_{2y})} \nl \n2\n\u200b\t\n \n\u200b\t\n =(l \n2x\n\u200b\t\n ,l \n2y\n\u200b\t\n )"
"l \n1\n\u200b\t\n \n\u200b\t\n =(l \n1x\n\u200b\t\n ,l \n1y\n\u200b\t\n ) and \\vec{l_2}=({l_{2x},l_{2y})} \nl \n2\n\u200b\t\n \n\u200b\t\n =(l \n2x\n\u200b\t\n ,l \n2y\n\u200b\t\n )"
8.2
Plane equation
"ax+by+cz+d=0\\\\ \\cfrac{a}{-2}=\\cfrac{b}{4}=\\cfrac{c}{-5}\\\\ a=-2, b=4, c=-6.\\\\ 2(-2)+4\\cdot 4-5(-3)+d=0\\\\ d=-27\\\\\n\n\n\nax+by+cz+d=0\u22122\n\n\n\na\n\n\u200b=4\n\n\n\nb\n\n\u200b=\u22125\n\n\n\nc\n\n\u200ba=\u22122,b=4,c=\u22126.2(\u22122)+4\u22c54\u22125(\u22123)+d=0d=\u221227"
the plane that passes through the point (2, 4, −3) and is parallel to
the plane "\u22122x + 4y \u2212 5z + 6 = 0"
"-2x+4y-5z-27=0."
8.3
The line that passes through the point (2, 5, 3) and is perpendicular to the plane
2x − 3y + 4z + 7 = 0.
Normal vector of plane and equation of line are
"\\vec{n}=(2,-3,4)\\\\ \\cfrac{x-2}{2}=\\cfrac{y-5}{-3}=\\cfrac{z-3}{4}"
Parametric equation of line
"t=\\cfrac{x-2}{2},t=\\cfrac{y-5}{-3},t=\\cfrac{z-3}{4}\\\\ x=2t+2,y=-3t+5,z=4t+3" .
8.4
Equation for line passing through the points (4, −2, 5) and (0, 2, 4)
"\\cfrac{x-4}{-4}=\\cfrac{y+2}{4}=\\cfrac{z-5}{-1}\\\\"
Equation of the plane passing through the point(−2, 3, 4) and is perpendicular to the line
"-4(x+2)+4(y-3)-(z-4)=0\\\\."
"\u22124x+4y\u2212z\u221216=0."
Comments
Leave a comment