P (ct,c/t) and Q (cT,c/T)
Slope of line joining PQ is "\\dfrac{(c\/T \u2013 c\/t)}{(cT \u2013 ct)}= \u2013 1\/Tt"
Equation of the line using slope-point form is "(y \u2013 ct) = (\u2013 1\/cTt)(x \u2013 c\/t)\\\\"
Simplifying we get "x + tTy = c(t + T)."
M is the midpoint of PQ. By midpoint formula,
"M \\equiv (c(t + T)\/2 , c(1\/t + 1\/T)\/2)"
i.e."M(c(t + T)\/2 , c(t + T)\/2tT)"
By distance formula,
"OM = \\sqrt{({\\dfrac{{c(t + T)}}2 \u2013 0})^2 + ({\\dfrac{c(t + T)}{2tT} \u2013 0})^2}"
Simplify to get OM = "[c(t + T)\\sqrt{(1 + T^2t^2)] \/ 2}] \u2026...(1)"
Put y = 0 in the equation of PQ for the coordinates of N.
"N \\equiv (c(t + T),0)"
Similarly MN ="\\sqrt{{(\\dfrac{c(t + T)}2 \u2013 c(t + T)})^2 + {{(\\dfrac{c(t + T)}{2tT} \u2013 0}})^2}"
Simplifying we get MN "= [c(t + T)\\sqrt{(1 + T^2t^2) \/ 2}] \u2026...(2)"
From (1) & (2),
OM = MN
Comments
Leave a comment