"A(3,2,1), B(5,0,2), C(3,3,0), D(1,-6,8)"
1) Form vectors
"\\overrightarrow{AB}=(5-3,0-2,2-1)=(2,-2,1)\\\\\n\\overrightarrow{AC}=(3-3,3-2,0-1)=(0,1,-1)"
We will find a scalar product
"\\overrightarrow{AB}\\cdot\\overrightarrow{AC}=|\\overrightarrow{AB}|\\cdot\n|\\overrightarrow{AC}|\\cdot cos\\alpha=\\\\\n=x_{\\overrightarrow{AB}}\\cdot x_{\\overrightarrow{AC}}+y_{\\overrightarrow{AB}}\\cdot\ny_{\\overrightarrow{AC}}+z_{\\overrightarrow{AB}}\\cdot z_{\\overrightarrow{AC}}"
"|\\overrightarrow{AB}|=\\sqrt{2^2+(-2)^2+1^2}=\\sqrt{4+4+1}=3\\\\\n|\\overrightarrow{AC}|=\\sqrt{0^2+1^2+(-1)^2}=\\sqrt{0+1+1}=\\sqrt{2}\\\\\n\\overrightarrow{AB}\\cdot\\overrightarrow{AC}=2\\cdot0+(-2)\\cdot1+1\\cdot(-1)=-3\\\\\n\\overrightarrow{AB}\\cdot\\overrightarrow{AC}=|\\overrightarrow{AB}|\\cdot\n|\\overrightarrow{AC}|\\cdot cos\\alpha\\\\\n-3=3\\cdot\\sqrt{2}\\cdot cos\\alpha\\\\\ncos\\alpha=-\\frac{1}{\\sqrt2}\\\\\n\\alpha=135^0"
The smaller angle between the side AB and AC
"180^0-\\alpha=180^0-135^0=45^0"
2) Form vectors
"\\overrightarrow{AB}=(2,-2,1)\\\\\n\\overrightarrow{AC}=(0,1,-1)\\\\\n\\overrightarrow{AD}=(1-3,-6-2,8-1)=(-2,-8,7)"
Find the volume of the pyramid "DABC"
"V=\\frac {1}{3}S\\cdot H\\\\\nV=\\frac{1}{6}|\\overrightarrow{AB}\\cdot\\overrightarrow{AC}\\cdot\\overrightarrow{AD}|"
where "\\overrightarrow{AB}\\cdot\\overrightarrow{AC}\\cdot\\overrightarrow{AD}" is the scalar triple product,
"S=\\frac{1}{2}|\\overrightarrow{AB}\\times\\overrightarrow{AC}|"
where "\\overrightarrow{AC}\\times\\overrightarrow{AC}" is the cross product
"\\overrightarrow{AB}\\cdot\\overrightarrow{AC}\\cdot\\overrightarrow{AD}=\\begin{vmatrix}\n 2 & -2&1 \\\\\n 0 &1&-1\\\\\n-2&-8&7\n\\end{vmatrix}=\\\\\n=2\\cdot1\\cdot7+(-2)\\cdot(-1)\\cdot(-2)+0\\cdot(-8)\\cdot1-\\\\\n-1\\cdot1\\cdot(-2)-(-2)\\cdot0\\cdot7-(-8)\\cdot(-1)\\cdot2=\\\\\n=14-4+0+2-0-16=-4"
"V=\\frac{1}{6}|-4|=\\frac{2}{3}"
"\\overrightarrow{AB}\\times\\overrightarrow{AC}=(\\begin{vmatrix}\n -2 & 1 \\\\\n 1 & -1\n\\end{vmatrix},-\\begin{vmatrix}\n 2 & 1 \\\\\n 0 & -1\n\\end{vmatrix},\\begin{vmatrix}\n 2 & -2 \\\\\n 0 & 1\n\\end{vmatrix})=\\\\\n=(2-1,-(-2-0),2-0)=(1,2,2)\\\\\n|\\overrightarrow{AB}\\times\\overrightarrow{AC}|=\\sqrt{1^2+2^2+2^2}=\\sqrt9=3"
"S=\\frac{1}{2}\\cdot3=\\frac{3}{2}\\\\"
"V=\\frac {1}{3}S\\cdot H\\\\\n\\frac{2}{3}=\\frac{1}{3}\\cdot\\frac{3}{2}\\cdot H\\\\\nH=\\frac{4}{3}"
The shortest distance between D and ABC plane is "\\frac{4}{3}"
Comments
Leave a comment