A(3,2,1),B(5,0,2),C(3,3,0),D(1,−6,8)
1) Form vectors
AB=(5−3,0−2,2−1)=(2,−2,1)AC=(3−3,3−2,0−1)=(0,1,−1)
We will find a scalar product
AB⋅AC=∣AB∣⋅∣AC∣⋅cosα==xAB⋅xAC+yAB⋅yAC+zAB⋅zAC
∣AB∣=22+(−2)2+12=4+4+1=3∣AC∣=02+12+(−1)2=0+1+1=2AB⋅AC=2⋅0+(−2)⋅1+1⋅(−1)=−3AB⋅AC=∣AB∣⋅∣AC∣⋅cosα−3=3⋅2⋅cosαcosα=−21α=1350
The smaller angle between the side AB and AC
1800−α=1800−1350=450
2) Form vectors
AB=(2,−2,1)AC=(0,1,−1)AD=(1−3,−6−2,8−1)=(−2,−8,7)
Find the volume of the pyramid DABC
V=31S⋅HV=61∣AB⋅AC⋅AD∣
where AB⋅AC⋅AD is the scalar triple product,
S=21∣AB×AC∣
where AC×AC is the cross product
AB⋅AC⋅AD=∣∣20−2−21−81−17∣∣==2⋅1⋅7+(−2)⋅(−1)⋅(−2)+0⋅(−8)⋅1−−1⋅1⋅(−2)−(−2)⋅0⋅7−(−8)⋅(−1)⋅2==14−4+0+2−0−16=−4
V=61∣−4∣=32
AB×AC=(∣∣−211−1∣∣,−∣∣201−1∣∣,∣∣20−21∣∣)==(2−1,−(−2−0),2−0)=(1,2,2)∣AB×AC∣=12+22+22=9=3
S=21⋅3=23
V=31S⋅H32=31⋅23⋅HH=34
The shortest distance between D and ABC plane is 34
Comments