A ( 3 , 2 , 1 ) , B ( 5 , 0 , 2 ) , C ( 3 , 3 , 0 ) , D ( 1 , − 6 , 8 ) A(3,2,1), B(5,0,2), C(3,3,0), D(1,-6,8) A ( 3 , 2 , 1 ) , B ( 5 , 0 , 2 ) , C ( 3 , 3 , 0 ) , D ( 1 , − 6 , 8 )
1) Form vectors
A B → = ( 5 − 3 , 0 − 2 , 2 − 1 ) = ( 2 , − 2 , 1 ) A C → = ( 3 − 3 , 3 − 2 , 0 − 1 ) = ( 0 , 1 , − 1 ) \overrightarrow{AB}=(5-3,0-2,2-1)=(2,-2,1)\\
\overrightarrow{AC}=(3-3,3-2,0-1)=(0,1,-1) A B = ( 5 − 3 , 0 − 2 , 2 − 1 ) = ( 2 , − 2 , 1 ) A C = ( 3 − 3 , 3 − 2 , 0 − 1 ) = ( 0 , 1 , − 1 )
We will find a scalar product
A B → ⋅ A C → = ∣ A B → ∣ ⋅ ∣ A C → ∣ ⋅ c o s α = = x A B → ⋅ x A C → + y A B → ⋅ y A C → + z A B → ⋅ z A C → \overrightarrow{AB}\cdot\overrightarrow{AC}=|\overrightarrow{AB}|\cdot
|\overrightarrow{AC}|\cdot cos\alpha=\\
=x_{\overrightarrow{AB}}\cdot x_{\overrightarrow{AC}}+y_{\overrightarrow{AB}}\cdot
y_{\overrightarrow{AC}}+z_{\overrightarrow{AB}}\cdot z_{\overrightarrow{AC}} A B ⋅ A C = ∣ A B ∣ ⋅ ∣ A C ∣ ⋅ cos α = = x A B ⋅ x A C + y A B ⋅ y A C + z A B ⋅ z A C
∣ A B → ∣ = 2 2 + ( − 2 ) 2 + 1 2 = 4 + 4 + 1 = 3 ∣ A C → ∣ = 0 2 + 1 2 + ( − 1 ) 2 = 0 + 1 + 1 = 2 A B → ⋅ A C → = 2 ⋅ 0 + ( − 2 ) ⋅ 1 + 1 ⋅ ( − 1 ) = − 3 A B → ⋅ A C → = ∣ A B → ∣ ⋅ ∣ A C → ∣ ⋅ c o s α − 3 = 3 ⋅ 2 ⋅ c o s α c o s α = − 1 2 α = 13 5 0 |\overrightarrow{AB}|=\sqrt{2^2+(-2)^2+1^2}=\sqrt{4+4+1}=3\\
|\overrightarrow{AC}|=\sqrt{0^2+1^2+(-1)^2}=\sqrt{0+1+1}=\sqrt{2}\\
\overrightarrow{AB}\cdot\overrightarrow{AC}=2\cdot0+(-2)\cdot1+1\cdot(-1)=-3\\
\overrightarrow{AB}\cdot\overrightarrow{AC}=|\overrightarrow{AB}|\cdot
|\overrightarrow{AC}|\cdot cos\alpha\\
-3=3\cdot\sqrt{2}\cdot cos\alpha\\
cos\alpha=-\frac{1}{\sqrt2}\\
\alpha=135^0 ∣ A B ∣ = 2 2 + ( − 2 ) 2 + 1 2 = 4 + 4 + 1 = 3 ∣ A C ∣ = 0 2 + 1 2 + ( − 1 ) 2 = 0 + 1 + 1 = 2 A B ⋅ A C = 2 ⋅ 0 + ( − 2 ) ⋅ 1 + 1 ⋅ ( − 1 ) = − 3 A B ⋅ A C = ∣ A B ∣ ⋅ ∣ A C ∣ ⋅ cos α − 3 = 3 ⋅ 2 ⋅ cos α cos α = − 2 1 α = 13 5 0
The smaller angle between the side AB and AC
18 0 0 − α = 18 0 0 − 13 5 0 = 4 5 0 180^0-\alpha=180^0-135^0=45^0 18 0 0 − α = 18 0 0 − 13 5 0 = 4 5 0
2) Form vectors
A B → = ( 2 , − 2 , 1 ) A C → = ( 0 , 1 , − 1 ) A D → = ( 1 − 3 , − 6 − 2 , 8 − 1 ) = ( − 2 , − 8 , 7 ) \overrightarrow{AB}=(2,-2,1)\\
\overrightarrow{AC}=(0,1,-1)\\
\overrightarrow{AD}=(1-3,-6-2,8-1)=(-2,-8,7) A B = ( 2 , − 2 , 1 ) A C = ( 0 , 1 , − 1 ) A D = ( 1 − 3 , − 6 − 2 , 8 − 1 ) = ( − 2 , − 8 , 7 )
Find the volume of the pyramid D A B C DABC D A BC
V = 1 3 S ⋅ H V = 1 6 ∣ A B → ⋅ A C → ⋅ A D → ∣ V=\frac {1}{3}S\cdot H\\
V=\frac{1}{6}|\overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD}| V = 3 1 S ⋅ H V = 6 1 ∣ A B ⋅ A C ⋅ A D ∣
where A B → ⋅ A C → ⋅ A D → \overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD} A B ⋅ A C ⋅ A D is the scalar triple product,
S = 1 2 ∣ A B → × A C → ∣ S=\frac{1}{2}|\overrightarrow{AB}\times\overrightarrow{AC}| S = 2 1 ∣ A B × A C ∣
where A C → × A C → \overrightarrow{AC}\times\overrightarrow{AC} A C × A C is the cross product
A B → ⋅ A C → ⋅ A D → = ∣ 2 − 2 1 0 1 − 1 − 2 − 8 7 ∣ = = 2 ⋅ 1 ⋅ 7 + ( − 2 ) ⋅ ( − 1 ) ⋅ ( − 2 ) + 0 ⋅ ( − 8 ) ⋅ 1 − − 1 ⋅ 1 ⋅ ( − 2 ) − ( − 2 ) ⋅ 0 ⋅ 7 − ( − 8 ) ⋅ ( − 1 ) ⋅ 2 = = 14 − 4 + 0 + 2 − 0 − 16 = − 4 \overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD}=\begin{vmatrix}
2 & -2&1 \\
0 &1&-1\\
-2&-8&7
\end{vmatrix}=\\
=2\cdot1\cdot7+(-2)\cdot(-1)\cdot(-2)+0\cdot(-8)\cdot1-\\
-1\cdot1\cdot(-2)-(-2)\cdot0\cdot7-(-8)\cdot(-1)\cdot2=\\
=14-4+0+2-0-16=-4 A B ⋅ A C ⋅ A D = ∣ ∣ 2 0 − 2 − 2 1 − 8 1 − 1 7 ∣ ∣ = = 2 ⋅ 1 ⋅ 7 + ( − 2 ) ⋅ ( − 1 ) ⋅ ( − 2 ) + 0 ⋅ ( − 8 ) ⋅ 1 − − 1 ⋅ 1 ⋅ ( − 2 ) − ( − 2 ) ⋅ 0 ⋅ 7 − ( − 8 ) ⋅ ( − 1 ) ⋅ 2 = = 14 − 4 + 0 + 2 − 0 − 16 = − 4
V = 1 6 ∣ − 4 ∣ = 2 3 V=\frac{1}{6}|-4|=\frac{2}{3} V = 6 1 ∣ − 4∣ = 3 2
A B → × A C → = ( ∣ − 2 1 1 − 1 ∣ , − ∣ 2 1 0 − 1 ∣ , ∣ 2 − 2 0 1 ∣ ) = = ( 2 − 1 , − ( − 2 − 0 ) , 2 − 0 ) = ( 1 , 2 , 2 ) ∣ A B → × A C → ∣ = 1 2 + 2 2 + 2 2 = 9 = 3 \overrightarrow{AB}\times\overrightarrow{AC}=(\begin{vmatrix}
-2 & 1 \\
1 & -1
\end{vmatrix},-\begin{vmatrix}
2 & 1 \\
0 & -1
\end{vmatrix},\begin{vmatrix}
2 & -2 \\
0 & 1
\end{vmatrix})=\\
=(2-1,-(-2-0),2-0)=(1,2,2)\\
|\overrightarrow{AB}\times\overrightarrow{AC}|=\sqrt{1^2+2^2+2^2}=\sqrt9=3 A B × A C = ( ∣ ∣ − 2 1 1 − 1 ∣ ∣ , − ∣ ∣ 2 0 1 − 1 ∣ ∣ , ∣ ∣ 2 0 − 2 1 ∣ ∣ ) = = ( 2 − 1 , − ( − 2 − 0 ) , 2 − 0 ) = ( 1 , 2 , 2 ) ∣ A B × A C ∣ = 1 2 + 2 2 + 2 2 = 9 = 3
S = 1 2 ⋅ 3 = 3 2 S=\frac{1}{2}\cdot3=\frac{3}{2}\\ S = 2 1 ⋅ 3 = 2 3
V = 1 3 S ⋅ H 2 3 = 1 3 ⋅ 3 2 ⋅ H H = 4 3 V=\frac {1}{3}S\cdot H\\
\frac{2}{3}=\frac{1}{3}\cdot\frac{3}{2}\cdot H\\
H=\frac{4}{3} V = 3 1 S ⋅ H 3 2 = 3 1 ⋅ 2 3 ⋅ H H = 3 4
The shortest distance between D and ABC plane is 4 3 \frac{4}{3} 3 4
Comments