Question #105096
Let A(3,2,1), B(5,0,2), C(3,3,0) and D(1,-6,8) be four points in R3. use vector methods to solve the following.

a) Find the smaller angle between the side AB and AC.
b) Find the shortest distance between D and ABC plane, without finding the equation of the plane
1
Expert's answer
2020-03-10T13:00:40-0400

A(3,2,1),B(5,0,2),C(3,3,0),D(1,6,8)A(3,2,1), B(5,0,2), C(3,3,0), D(1,-6,8)

1) Form vectors

AB=(53,02,21)=(2,2,1)AC=(33,32,01)=(0,1,1)\overrightarrow{AB}=(5-3,0-2,2-1)=(2,-2,1)\\ \overrightarrow{AC}=(3-3,3-2,0-1)=(0,1,-1)

We will find a scalar product

ABAC=ABACcosα==xABxAC+yAByAC+zABzAC\overrightarrow{AB}\cdot\overrightarrow{AC}=|\overrightarrow{AB}|\cdot |\overrightarrow{AC}|\cdot cos\alpha=\\ =x_{\overrightarrow{AB}}\cdot x_{\overrightarrow{AC}}+y_{\overrightarrow{AB}}\cdot y_{\overrightarrow{AC}}+z_{\overrightarrow{AB}}\cdot z_{\overrightarrow{AC}}

AB=22+(2)2+12=4+4+1=3AC=02+12+(1)2=0+1+1=2ABAC=20+(2)1+1(1)=3ABAC=ABACcosα3=32cosαcosα=12α=1350|\overrightarrow{AB}|=\sqrt{2^2+(-2)^2+1^2}=\sqrt{4+4+1}=3\\ |\overrightarrow{AC}|=\sqrt{0^2+1^2+(-1)^2}=\sqrt{0+1+1}=\sqrt{2}\\ \overrightarrow{AB}\cdot\overrightarrow{AC}=2\cdot0+(-2)\cdot1+1\cdot(-1)=-3\\ \overrightarrow{AB}\cdot\overrightarrow{AC}=|\overrightarrow{AB}|\cdot |\overrightarrow{AC}|\cdot cos\alpha\\ -3=3\cdot\sqrt{2}\cdot cos\alpha\\ cos\alpha=-\frac{1}{\sqrt2}\\ \alpha=135^0

The smaller angle between the side AB and AC

1800α=18001350=450180^0-\alpha=180^0-135^0=45^0

2) Form vectors

AB=(2,2,1)AC=(0,1,1)AD=(13,62,81)=(2,8,7)\overrightarrow{AB}=(2,-2,1)\\ \overrightarrow{AC}=(0,1,-1)\\ \overrightarrow{AD}=(1-3,-6-2,8-1)=(-2,-8,7)

Find the volume of the pyramid DABCDABC

V=13SHV=16ABACADV=\frac {1}{3}S\cdot H\\ V=\frac{1}{6}|\overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD}|

where ABACAD\overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD} is the scalar triple product,

S=12AB×ACS=\frac{1}{2}|\overrightarrow{AB}\times\overrightarrow{AC}|

where AC×AC\overrightarrow{AC}\times\overrightarrow{AC} is the cross product

ABACAD=221011287==217+(2)(1)(2)+0(8)111(2)(2)07(8)(1)2==144+0+2016=4\overrightarrow{AB}\cdot\overrightarrow{AC}\cdot\overrightarrow{AD}=\begin{vmatrix} 2 & -2&1 \\ 0 &1&-1\\ -2&-8&7 \end{vmatrix}=\\ =2\cdot1\cdot7+(-2)\cdot(-1)\cdot(-2)+0\cdot(-8)\cdot1-\\ -1\cdot1\cdot(-2)-(-2)\cdot0\cdot7-(-8)\cdot(-1)\cdot2=\\ =14-4+0+2-0-16=-4

V=164=23V=\frac{1}{6}|-4|=\frac{2}{3}

AB×AC=(2111,2101,2201)==(21,(20),20)=(1,2,2)AB×AC=12+22+22=9=3\overrightarrow{AB}\times\overrightarrow{AC}=(\begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix},-\begin{vmatrix} 2 & 1 \\ 0 & -1 \end{vmatrix},\begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix})=\\ =(2-1,-(-2-0),2-0)=(1,2,2)\\ |\overrightarrow{AB}\times\overrightarrow{AC}|=\sqrt{1^2+2^2+2^2}=\sqrt9=3

S=123=32S=\frac{1}{2}\cdot3=\frac{3}{2}\\

V=13SH23=1332HH=43V=\frac {1}{3}S\cdot H\\ \frac{2}{3}=\frac{1}{3}\cdot\frac{3}{2}\cdot H\\ H=\frac{4}{3}

The shortest distance between D and ABC plane is 43\frac{4}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS