The equation of the straight line is
2x+3y+2z=8x−y+2z=5
the direction vector
a=[n1,n2]n1=(2;3;2)n2=(1;−1;2)a=(∣∣3−122∣∣;−∣∣2122∣∣;∣∣213−1∣∣)==(8;−2−5)
point
let y=0 , then
2x+2z=8x+2z=5x=3z=1
A(3,0,1)
The equation of a straight line is
8x−3=−2y−0=−5z−1
Let's take an arbitrary point M(x0;y0;z0) on the surface
x2−2y2−2z2=8x02−2y02−2z02=8
The equation of a plane is
∣∣x−x03−x08y−y00−y0−2z−z01−z0−5∣∣=0
(x−x0)(5y0+2−2z0)+(y−y0)(15−5x0+8−8z0)++(z−z0)(−6+2x0+8y0)=0(x−x0)(5y0−2z0+2)+(y−y0)(−5x0−8z0+23)++(z−z0)(2x0+8y0−6)=0
hence the plane exists.
Comments