Question #104648
Does there exist a plane targent to x²-2y²-2z²=8 and which passes through
2x+3y+2z = 8, x−y+2z = 5? Justify your answer.
1
Expert's answer
2020-03-06T10:53:17-0500

The equation of the straight line is

2x+3y+2z=8xy+2z=52x+3y+2z=8\\ x-y+2z=5

the direction vector

a=[n1,n2]n1=(2;3;2)n2=(1;1;2)a=(3212;2212;2311)==(8;25)\vec{a}=[\vec{n_1},\vec{n_2}]\\ \vec{n_1}=(2;3;2)\\ \vec{n_2}=(1;-1;2)\\ \vec{a}=\left( \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix};-\begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix};\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix}\right)=\\ =(8;-2-5)

 point

let y=0y=0 , then

2x+2z=8x+2z=5x=3z=12x+2z=8\\ x+2z=5\\ x=3\\ z=1

A(3,0,1)A(3,0,1)

The equation of a straight line is

x38=y02=z15\frac{x-3}{8}=\frac{y-0}{-2}=\frac{z-1}{-5}

Let's take an arbitrary point M(x0;y0;z0)M(x_0;y_0;z_0) on the surface

x22y22z2=8x022y022z02=8x^2-2y^2-2z^2=8\\ x_0^2-2y_0^2-2z_0^2=8\\

 The equation of a plane is

xx0yy0zz03x00y01z0825=0\begin{vmatrix} x-x_0 & y-y_0&z-z_0 \\ 3-x_0 & 0-y_0& 1-z_0\\ 8&-2&-5 \end{vmatrix}=0  

(xx0)(5y0+22z0)+(yy0)(155x0+88z0)++(zz0)(6+2x0+8y0)=0(xx0)(5y02z0+2)+(yy0)(5x08z0+23)++(zz0)(2x0+8y06)=0(x-x_0)(5y_0+2-2z_0)+(y-y_0)(15-5x_0+8-8z_0)+\\ +(z-z_0)(-6+2x_0+8y_0)=0\\ (x-x_0)(5y_0-2z_0+2)+(y-y_0)(-5x_0-8z_0+23)+\\ +(z-z_0)(2x_0+8y_0-6)=0\\

hence the plane exists.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS