Question #104986
a) Find a non-zero unit vector u with terminal point Q(-7,1,4) such that u has the opposite direction as v=(3,2,1).

b) Find a non-zero unit vector u with terminal point Q(-7,1,4) such that u has the same direction as v=(1,2,3).
1
Expert's answer
2020-03-09T13:59:10-0400

a) PQ=u=1\overrightarrow{PQ}=|\vec{u}|=1

Q(7,1,4);P(x,y,z)Q(-7,1,4); P(x,y,z)

v=(3,2,1)\vec{v}=(3,2,1)

uvu=λv,λ<0\vec{u}\uparrow\downarrow\vec{v} \rArr \vec{u}=\lambda\vec{v}, \lambda<0

{u=(7x)2+(1y)2+(4z)2=1(7x, 1y, 4z)=λ(3, 2, 1)\begin{cases} |\vec{u}|=\sqrt{(-7-x)^2+(1-y)^2+(4-z)^2}=1 \\ (-7-x,\ 1-y, \ 4-z)=\lambda(3,\ 2,\ 1) \end{cases} \hArr

{(7x)2+(1y)2+(4z)2=17x=3λ1y=2λ4z=λ\begin{cases} (-7-x)^2+(1-y)^2+(4-z)^2=1 \\ -7-x=3\lambda\\ 1-y=2\lambda\\ 4-z=\lambda \end{cases} \hArr

{(7x)2+(1y)2+(4z)2=1(7x)2=9λ2(1y)2=4λ2(4z)2=λ2\begin{cases} (-7-x)^2+(1-y)^2+(4-z)^2=1 \\ (-7-x)^2=9\lambda^2\\ (1-y)^2=4\lambda^2\\ (4-z)^2=\lambda^2 \end{cases} \hArr

{9λ2+4λ2+λ2=1(7x)2=9λ2(1y)2=4λ2(4z)2=λ2{λ2=114(7x)2=914(1y)2=414(4z)2=114\begin{cases} 9\lambda^2+4\lambda^2+\lambda^2=1 \\ (-7-x)^2=9\lambda^2\\ (1-y)^2=4\lambda^2\\ (4-z)^2=\lambda^2 \end{cases} \hArr \begin{cases} \lambda^2=\frac{1}{14} \\ (-7-x)^2=\frac{9}{14}\\ (1-y)^2=\frac{4}{14}\\ (4-z)^2=\frac{1}{14} \end{cases} \hArr

λ<0λ=114\lambda<0 \rArr\lambda=-\frac{1}{\sqrt{14}}

{λ=1147x=3141y=2144z=114{λ=114x=3147y=214+1z=114+4u=(314,214,114)\begin{cases} \lambda=-\frac{1}{\sqrt{14}} \\ -7-x=-\frac{3}{\sqrt{14}}\\ 1-y=-\frac{2}{\sqrt{14}}\\ 4-z=-\frac{1}{\sqrt{14}} \end{cases} \hArr \begin{cases} \lambda=-\frac{1}{\sqrt{14}} \\ x=\frac{3}{\sqrt{14}}-7\\ y=\frac{2}{\sqrt{14}}+1\\ z=\frac{1}{\sqrt{14}}+4 \end{cases} \hArr \vec{u}=(-\frac{3}{\sqrt{14}},-\frac{2}{\sqrt{14}},-\frac{1}{\sqrt{14}})


b) PQ=u=1\overrightarrow{PQ}=|\vec{u}|=1

Q(7,1,4);P(x,y,z)Q(-7,1,4); P(x,y,z)

v=(1,2,3)\vec{v}=(1,2,3)

uvu=λv,λ>0\vec{u}\upuparrows\vec{v} \rArr \vec{u}=\lambda\vec{v}, \lambda>0

{u=(7x)2+(1y)2+(4z)2=1(7x, 1y, 4z)=λ(1, 2, 3)\begin{cases} |\vec{u}|=\sqrt{(-7-x)^2+(1-y)^2+(4-z)^2}=1 \\ (-7-x,\ 1-y, \ 4-z)=\lambda(1,\ 2,\ 3) \end{cases} \hArr

{(7x)2+(1y)2+(4z)2=17x=λ1y=2λ4z=3λ\begin{cases} (-7-x)^2+(1-y)^2+(4-z)^2=1 \\ -7-x=\lambda\\ 1-y=2\lambda\\ 4-z=3\lambda \end{cases} \hArr

{(7x)2+(1y)2+(4z)2=1(7x)2=λ2(1y)2=4λ2(4z)2=9λ2\begin{cases} (-7-x)^2+(1-y)^2+(4-z)^2=1 \\ (-7-x)^2=\lambda^2\\ (1-y)^2=4\lambda^2\\ (4-z)^2=9\lambda^2 \end{cases} \hArr

{λ2+4λ2+9λ2=1(7x)2=λ2(1y)2=4λ2(4z)2=9λ2{λ2=114(7x)2=114(1y)2=414(4z)2=914\begin{cases} \lambda^2+4\lambda^2+9\lambda^2=1 \\ (-7-x)^2=\lambda^2\\ (1-y)^2=4\lambda^2\\ (4-z)^2=9\lambda^2 \end{cases} \hArr \begin{cases} \lambda^2=\frac{1}{14} \\ (-7-x)^2=\frac{1}{14}\\ (1-y)^2=\frac{4}{14}\\ (4-z)^2=\frac{9}{14} \end{cases} \hArr

λ>0λ=114\lambda>0 \rArr\lambda=\frac{1}{\sqrt{14}}

{λ=1147x=1141y=2144z=314{λ=114x=1147y=214+1z=314+4u=(114,214,314)\begin{cases} \lambda=\frac{1}{\sqrt{14}} \\ -7-x=\frac{1}{\sqrt{14}}\\ 1-y=\frac{2}{\sqrt{14}}\\ 4-z=\frac{3}{\sqrt{14}} \end{cases} \hArr \begin{cases} \lambda=\frac{1}{\sqrt{14}} \\ x=-\frac{1}{\sqrt{14}}-7\\ y=-\frac{2}{\sqrt{14}}+1\\ z=-\frac{3}{\sqrt{14}}+4 \end{cases} \hArr \vec{u}=(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS