To prove that the circle { ( x − 1 ) 2 + y 2 = 1 z = 0 \begin{cases}
(x-1)^2+y^2=1 \\
z=0
\end{cases} { ( x − 1 ) 2 + y 2 = 1 z = 0 lies inside sphere centred at the origin, and
having radius 2√2, we need to check that x 2 + y 2 + z 2 < ( 2 2 ) 2 x^2+y^2+z^2<(2\sqrt {2})^2 x 2 + y 2 + z 2 < ( 2 2 ) 2 .
Proof:
{ ( x − 1 ) 2 + y 2 = 1 z = 0 , { x 2 − 2 x + 1 + y 2 = 1 z = 0 , { x 2 + y 2 = 2 x z = 0 \begin{cases}
(x-1)^2+y^2=1 \\
z=0
\end{cases},
\quad
\begin{cases}
x^2-2x+1+y^2=1 \\
z=0
\end{cases}, \quad
\begin{cases}
x^2+y^2=2x \\
z=0
\end{cases} { ( x − 1 ) 2 + y 2 = 1 z = 0 , { x 2 − 2 x + 1 + y 2 = 1 z = 0 , { x 2 + y 2 = 2 x z = 0
x 2 + y 2 + z 2 = 2 x + 0 = 2 x x^2+y^2+z^2=2x+0=2x x 2 + y 2 + z 2 = 2 x + 0 = 2 x
We know that ( x − 1 ) 2 + y 2 = 1 ⇒ ( x − 1 ) 2 ≤ 1 ⇒ 0 ≤ x ≤ 2 (x-1)^2+y^2=1 \ \Rightarrow (x-1)^2\leq1 \ \Rightarrow 0\leq x\leq 2 ( x − 1 ) 2 + y 2 = 1 ⇒ ( x − 1 ) 2 ≤ 1 ⇒ 0 ≤ x ≤ 2
So, we have x 2 + y 2 + z 2 = 2 x ≤ 2 × 2 = 4 < 8 = ( 2 2 ) 2 . x^2+y^2+z^2=2x\leq 2\times 2=4<8=(2\sqrt{2})^2. x 2 + y 2 + z 2 = 2 x ≤ 2 × 2 = 4 < 8 = ( 2 2 ) 2 .
Therefore, that circle lies in the sphere.
Comments