To prove that the circle "\\begin{cases}\n(x-1)^2+y^2=1 \\\\\nz=0\n\\end{cases}" lies inside sphere centred at the origin, and
having radius 2√2, we need to check that "x^2+y^2+z^2<(2\\sqrt {2})^2" .
Proof:
"\\begin{cases}\n(x-1)^2+y^2=1 \\\\\nz=0\n\\end{cases}, \n\\quad\n\\begin{cases}\nx^2-2x+1+y^2=1 \\\\\nz=0\n\\end{cases}, \\quad \n\\begin{cases}\n x^2+y^2=2x \\\\\nz=0\n\\end{cases}"
"x^2+y^2+z^2=2x+0=2x"
We know that "(x-1)^2+y^2=1 \\ \\Rightarrow (x-1)^2\\leq1 \\ \\Rightarrow 0\\leq x\\leq 2"
So, we have "x^2+y^2+z^2=2x\\leq 2\\times 2=4<8=(2\\sqrt{2})^2."
Therefore, that circle lies in the sphere.
Comments
Leave a comment