To prove that the circle {(x−1)2+y2=1z=0\begin{cases} (x-1)^2+y^2=1 \\ z=0 \end{cases}{(x−1)2+y2=1z=0 lies inside sphere centred at the origin, and
having radius 2√2, we need to check that x2+y2+z2<(22)2x^2+y^2+z^2<(2\sqrt {2})^2x2+y2+z2<(22)2 .
Proof:
{(x−1)2+y2=1z=0,{x2−2x+1+y2=1z=0,{x2+y2=2xz=0\begin{cases} (x-1)^2+y^2=1 \\ z=0 \end{cases}, \quad \begin{cases} x^2-2x+1+y^2=1 \\ z=0 \end{cases}, \quad \begin{cases} x^2+y^2=2x \\ z=0 \end{cases}{(x−1)2+y2=1z=0,{x2−2x+1+y2=1z=0,{x2+y2=2xz=0
x2+y2+z2=2x+0=2xx^2+y^2+z^2=2x+0=2xx2+y2+z2=2x+0=2x
We know that (x−1)2+y2=1 ⇒(x−1)2≤1 ⇒0≤x≤2(x-1)^2+y^2=1 \ \Rightarrow (x-1)^2\leq1 \ \Rightarrow 0\leq x\leq 2(x−1)2+y2=1 ⇒(x−1)2≤1 ⇒0≤x≤2
So, we have x2+y2+z2=2x≤2×2=4<8=(22)2.x^2+y^2+z^2=2x\leq 2\times 2=4<8=(2\sqrt{2})^2.x2+y2+z2=2x≤2×2=4<8=(22)2.
Therefore, that circle lies in the sphere.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments