Curve given is
x = 2 s i n ( a 3 t ) x=2sin(a^{3t}) x = 2 s in ( a 3 t )
y = 2 c o s ( a 3 t ) y=2cos(a^{3t}) y = 2 cos ( a 3 t )
z = 8 t z=8t z = 8 t
v x = d x / d t = 2. c o s ( a 3 t ) . a 3 t ln a . d ( 3 t ) / d t v_x=dx/dt=2.cos(a^{3t}).a^{3t}\ln a.d(3t)/dt v x = d x / d t = 2. cos ( a 3 t ) . a 3 t ln a . d ( 3 t ) / d t
v x = 2. c o s ( a 3 t ) . a 3 t . ln a . 3 v_x=2.cos(a^{3t}).a^{3t}.\ln a.3 v x = 2. cos ( a 3 t ) . a 3 t . ln a .3
v x = 6. c o s ( a 3 t ) . a 3 t . ln a v_x=6.cos(a^ {3t} ).a^{3t}.\ln a v x = 6. cos ( a 3 t ) . a 3 t . ln a -------(i)
v y = d y / d t = − 2. s i n ( a 3 t ) . a 3 t ln a . d ( 3 t ) / d t v_y=dy/dt=-2.sin(a^{3t}).a^{3t}\ln a.d(3t)/dt v y = d y / d t = − 2. s in ( a 3 t ) . a 3 t ln a . d ( 3 t ) / d t
v y = − 2. s i n ( a 3 t ) . a 3 t . ln a . 3 v_y=-2.sin(a^{3t}).a^{3t}.\ln a.3 v y = − 2. s in ( a 3 t ) . a 3 t . ln a .3
v y = − 6. s i n ( a 3 t ) . a 3 t . ln a v_y=-6.sin(a^{3t}).a^{3t}.\ln a v y = − 6. s in ( a 3 t ) . a 3 t . ln a ---------(ii)
v z = d z / d t = 8 v_z= dz/dt= 8 v z = d z / d t = 8 ------(iii)
v = v x i ^ + v y j ^ + v z k ^ v = v_x \hat{i}+v_y\hat{j}+v_z\hat{k} v = v x i ^ + v y j ^ + v z k ^
∣ v ∣ = v x 2 + v y 2 + v z 2 |v| = \sqrt{v_x^2 + v_y^2+v_z^2} ∣ v ∣ = v x 2 + v y 2 + v z 2
∣ v ∣ = ( 6. c o s ( a 3 t ) . a 3 t . ln a ) 2 + ( 6. s i n ( a 3 t ) . a 3 t . ln a ) 2 + 8 2 |v|=\sqrt{(6.cos(a^ {3t} ).a^{3t}.\ln a)^2+(6.sin(a^ {3t} ).a^{3t}.\ln a)^2+ 8^2} ∣ v ∣ = ( 6. cos ( a 3 t ) . a 3 t . ln a ) 2 + ( 6. s in ( a 3 t ) . a 3 t . ln a ) 2 + 8 2
∣ v ∣ = ( 6. a 3 t . ln a ) 2 ( s i n ( a 3 t ) 2 + c o s ( a 3 t ) 2 ) + 8 2 |v|=\sqrt{(6.a^{3t}.\ln a)^2(sin(a^{3t})^2+cos(a^{3t})^2)+8^2} ∣ v ∣ = ( 6. a 3 t . ln a ) 2 ( s in ( a 3 t ) 2 + cos ( a 3 t ) 2 ) + 8 2
∣ v ∣ = 36. a 6 t ( ln a ) 2 + 64 |v| =\sqrt{36.a^{6t}(\ln a)^2+64} ∣ v ∣ = 36. a 6 t ( ln a ) 2 + 64 (Answer)
Comments