Make the subject of the formula S=ut+1/2 at2
S=ut+12at2u=1t(S−12at2)a=2(S−ut)t2t=−u+u2+2aSa or t=−u−u2+2aSaS=ut+\frac{1}{2}at^2\\u=\frac{1}{t}(S-\frac{1}{2}at^2)\\a=\frac{2(S-ut)}{t^2}\\t=\frac{-u+\sqrt{u^2+2aS}}{a}\;or\;t=\frac{-u-\sqrt{u^2+2aS}}{a}S=ut+21at2u=t1(S−21at2)a=t22(S−ut)t=a−u+u2+2aSort=a−u−u2+2aS
Since t≥0t\ge0t≥0, if a>0, only the first solution is valid, if a<0 both solutions are valid.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment