Answer to Question #93109 in Algebra for Unknown287159

Question #93109
Find the values of p and q if (x-1) and (x+2) are both factors px*3 +4x*2+qx -6
1
Expert's answer
2019-08-22T11:53:05-0400

Using the factor theorem, if f(x)=px3+4x2+qx6f(x)=px^3+4x^2+qx-6 has factors (x1)(x-1) and (x+2)(x+2), then

f(1)=0,f(2)=0f(1)=0, f(-2)=0.

{p13+412+q16=0p(2)3+4(2)2+q(2)6=0\begin{cases} p\cdot 1^3 +4\cdot 1^2 +q\cdot 1-6=0 \\ p\cdot (-2)^3 +4\cdot (-2)^2 +q\cdot (-2)-6=0 \end{cases}

{p+4+q6=08p+162q6=0\begin{cases} p+4 +q-6=0 \\ -8p +16 -2q-6=0 \end{cases}

{q=2p8p2q=10\begin{cases} q=2-p \\ -8p -2q=-10 \end{cases}

{q=2p4p+q=5\begin{cases} q=2-p \\ 4p+q=5 \end{cases}

{q=2p4p+2p=5\begin{cases} q=2-p \\ 4p+2-p=5 \end{cases}

{q=2p3p=3\begin{cases} q=2-p \\ 3p=3 \end{cases}

{p=1q=1\begin{cases} p=1 \\ q=1 \end{cases}

Answer: p=1,q=1p=1,q=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment