Using the factor theorem, if "f(x)=px^3+4x^2+qx-6" has factors "(x-1)" and "(x+2)", then
"f(1)=0, f(-2)=0".
"\\begin{cases} p\\cdot 1^3 +4\\cdot 1^2 +q\\cdot 1-6=0 \\\\ p\\cdot (-2)^3 +4\\cdot (-2)^2 +q\\cdot (-2)-6=0 \\end{cases}"
"\\begin{cases} p+4 +q-6=0 \\\\ -8p +16 -2q-6=0 \\end{cases}"
"\\begin{cases} q=2-p \\\\ -8p -2q=-10 \\end{cases}"
"\\begin{cases} q=2-p \\\\ 4p+q=5 \\end{cases}"
"\\begin{cases} q=2-p \\\\ 4p+2-p=5 \\end{cases}"
"\\begin{cases} q=2-p \\\\ 3p=3 \\end{cases}"
"\\begin{cases} p=1 \\\\ q=1 \\end{cases}"
Answer: "p=1,q=1"
Comments
Leave a comment