2x3+3x2−8x−12=0x3+(3/2)x2−4x−6=0(ax3+bx2+cx+d=0) Substitute
x=y−(b/3)=y−(1/2)
(y−(1/2))3+3/2(y−(1/2))2−4(y−1/2)−6=0
y3−(19/4)y−(15/4)=0(y3+py+q=0) Formula Cardano:
Q=(p/3)3+(q/2)2,A=((−q/2)+Q(1/2))(1/3),B=((−q/2)−Q(1/2))(1/3)
y1=A+B,y2=(−(A+B)/2)+3(1/2)(A−B/2)i,y3=(−(A+B)/2)−3(1/2)(A−B/2)i
Q=−5959/64 Since the value is less than 0, 3 complex numbers will be solutions of the equation
A=(15/8+(5959(1/2)/8)i)1/2B=(15/8−(5959(1/2)/8)i)1/2y1=(15/8−(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2
y2=(−(15/8−(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2)/2+3(1/2)i∗((15/8−(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2)/2 y3=(-(15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2-3^(1/2)i*((15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2
Answer x1,2,3=y1,2,3-1/2
Comments