Question #91343
Apply Cardano's method for finding the roots of 2x³+3x²-8x-12=0
1
Expert's answer
2019-07-08T10:16:23-0400

2x3+3x28x12=02x^3+3x^2-8x-12=0x3+(3/2)x24x6=0x^3+(3/2)x^2-4x-6=0(ax3+bx2+cx+d=0)(ax^3+bx^2+cx+d=0)

Substitute

x=y(b/3)=y(1/2)x=y-(b/3)=y-(1/2)

(y(1/2))3+3/2(y(1/2))24(y1/2)6=0(y-(1/2))^3+3/2(y-(1/2))^2-4(y-1/2)-6=0

y3(19/4)y(15/4)=0(y3+py+q=0)y^3-(19/4)y-(15/4)=0 (y^3+py+q=0)

Formula Cardano:

Q=(p/3)3+(q/2)2,A=((q/2)+Q(1/2))(1/3),B=((q/2)Q(1/2))(1/3)Q=(p/3)^3+(q/2)^2, A=((-q/2)+Q^(1/2))^(1/3), B=((-q/2)-Q^(1/2))^(1/3)

y1=A+B,y2=((A+B)/2)+3(1/2)(AB/2)i,y3=((A+B)/2)3(1/2)(AB/2)iy1=A+B, y2=(-(A+B)/2)+3^(1/2)(A-B/2)i, y3=(-(A+B)/2)-3^(1/2)(A-B/2)i

Q=5959/64Q=-5959/64

Since the value is less than 0, 3 complex numbers will be solutions of the equation


A=(15/8+(5959(1/2)/8)i)1/2A=(15/8+(5959^(1/2)/8)i)^1/2B=(15/8(5959(1/2)/8)i)1/2B=(15/8-(5959^(1/2)/8)i)^1/2y1=(15/8(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2y1=(15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2

y2=((15/8(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2)/2+3(1/2)i((15/8(5959(1/2)/8)i)1/2+(15/8+(5959(1/2)/8)i)1/2)/2y2=(-(15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2+3^(1/2)i*((15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2

y3=(-(15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2-3^(1/2)i*((15/8-(5959^(1/2)/8)i)^1/2+(15/8+(5959^(1/2)/8)i)^1/2)/2

Answer x1,2,3=y1,2,3-1/2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS