Question #91342
Prove that (A∪B)\(A∩B)=(A\B)∪(B\A) for any two sets A and B in a universal set U.
1
Expert's answer
2019-07-08T10:15:04-0400


Taking Left hand side (LHS) =


(AUB) \ (A∩B)


Let xx \in (A∪B) \ (A∩B)


So xx \in (A∪B) \land xx \notin (A∩B)

Now for the above condition we have following three options


  1. xAxBx \in A \land x \in B

It means xx \in (A∩B). So this contradicts to xx \notin (A∩B).


So this is not an option for this point.


2. xAxBx \in A \land x \notin B

This means xx \in A∩Bc . Then xx \in (A∩Bc) U (B∩Ac)

So xx \in (A\B) ∪ (B\A)


3. xAxBx \notin A \land x \in B


This means xx\in  Ac∩B. Then xx \in (A∩Bc) U (B∩Ac)


So xx \in (A\B) ∪ (B\A)


So LHS = RHS


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS