De Moivre's theorem states that for any real number θ and integer n it holds that
Let n = 3, then
Then use the Binomial theorem to expand the terms in the brackets:
"\\cos ^3(\\theta )+3 i \\sin (\\theta ) \\cos ^2(\\theta )-3 \\sin ^2(\\theta ) \\cos (\\theta )-i \\sin ^3(\\theta ) = \\cos(3\\theta) + i\\sin(3\\theta)."Thus, equating the real and imaginary parts, we get
"\\cos ^3(\\theta )-3 \\sin ^2(\\theta ) \\cos (\\theta ) = \\cos(3\\theta),""3 \\sin (\\theta ) \\cos ^2(\\theta )-\\sin ^3(\\theta ) = \\sin(3\\theta)."Then
"\\cos(3\\theta) = \\cos ^3(\\theta )-3 \\big(1-\\cos^2(\\theta )\\big) \\cos (\\theta ) = 4\\cos ^3(\\theta )-3\\cos (\\theta )."
Comments
Leave a comment