De Moivre's theorem: "z^n = \\cos(n\\phi)+ i\\sin(n\\phi)."
So "z^3 = \\cos(3\\theta) + i\\sin(3\\theta)"
In the second part of derivation, we need to bring to third power this expression "(\\cos(\\theta)+i\\sin(\\theta))"
"(\\cos(\\theta) + i\\sin(\\theta))^3 = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta)+3i\\cos^2(\\theta)\\sin(\\theta) - i\\sin^3(\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta) + i(3\\cos^2(\\theta)\\sin(\\theta) - i\\sin^3(\\theta)" Now we can equate real parts of first and second expressions:
"\\cos(3\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)(1 - \\cos^2(\\theta)) = \\cos^3(\\theta) - 3\\cos(\\theta) + 3\\cos^3(\\theta) = 4\\cos^3(\\theta) - 3\\cos(\\theta)"
Comments
Leave a comment