Answer to Question #86945 in Algebra for sonali mansingh

Question #86945
Use De Moivre’s theorem to show that cos3θ = 4cos θ − 3cosθ
3
.
1
Expert's answer
2019-03-29T11:58:55-0400

De Moivre's theorem: zn=cos(nϕ)+isin(nϕ).z^n = \cos(n\phi)+ i\sin(n\phi).

So z3=cos(3θ)+isin(3θ)z^3 = \cos(3\theta) + i\sin(3\theta)

In the second part of derivation, we need to bring to third power this expression (cos(θ)+isin(θ))(\cos(\theta)+i\sin(\theta))

(cos(θ)+isin(θ))3=cos3(θ)3cos(θ)sin2(θ)+3icos2(θ)sin(θ)isin3(θ)=cos3(θ)3cos(θ)sin2(θ)+i(3cos2(θ)sin(θ)isin3(θ)(\cos(\theta) + i\sin(\theta))^3 = \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta)+3i\cos^2(\theta)\sin(\theta) - i\sin^3(\theta) = \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) + i(3\cos^2(\theta)\sin(\theta) - i\sin^3(\theta) Now we can equate real parts of first and second expressions:

cos(3θ)=cos3(θ)3cos(θ)sin2(θ)=cos3(θ)3cos(θ)(1cos2(θ))=cos3(θ)3cos(θ)+3cos3(θ)=4cos3(θ)3cos(θ)\cos(3\theta) = \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) = \cos^3(\theta) - 3\cos(\theta)(1 - \cos^2(\theta)) = \cos^3(\theta) - 3\cos(\theta) + 3\cos^3(\theta) = 4\cos^3(\theta) - 3\cos(\theta)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment