Answer to Question #86945 in Algebra for sonali mansingh

Question #86945
Use De Moivre’s theorem to show that cos3θ = 4cos θ − 3cosθ
3
.
1
Expert's answer
2019-03-29T11:58:55-0400

De Moivre's theorem: "z^n = \\cos(n\\phi)+ i\\sin(n\\phi)."

So "z^3 = \\cos(3\\theta) + i\\sin(3\\theta)"

In the second part of derivation, we need to bring to third power this expression "(\\cos(\\theta)+i\\sin(\\theta))"

"(\\cos(\\theta) + i\\sin(\\theta))^3 = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta)+3i\\cos^2(\\theta)\\sin(\\theta) - i\\sin^3(\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta) + i(3\\cos^2(\\theta)\\sin(\\theta) - i\\sin^3(\\theta)" Now we can equate real parts of first and second expressions:

"\\cos(3\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)\\sin^2(\\theta) = \\cos^3(\\theta) - 3\\cos(\\theta)(1 - \\cos^2(\\theta)) = \\cos^3(\\theta) - 3\\cos(\\theta) + 3\\cos^3(\\theta) = 4\\cos^3(\\theta) - 3\\cos(\\theta)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS