Question #346703

1. Show that if 5/3< 2x< 11/3, then x∈{y∈R such that |y- 4/3| < 1/2}


2. Draw the graph of the function f, defined by f(x)= |x-6| + |5 - x| ; x∈ [2,8]


1
Expert's answer
2022-06-03T06:21:12-0400

1.

Let's solve the inequalities.

53<2x<113,\frac{5}{3}< 2x< \frac{11}{3},

we can divide by 2:

56<x<116,\frac{5}{6}<x<\frac{11}{6},

in interval notation: x(56,116).x \in (\frac{5}{6}, \frac{11}{6}).


y43<12,|y- \frac{4}{3}| < \frac{1}{2},

12<y43<12,- \frac{1}{2}<y- \frac{4}{3} < \frac{1}{2},

12+43<y<12+43,- \frac{1}{2}+ \frac{4}{3}<y < \frac{1}{2}+ \frac{4}{3},

36+86<y<36+86,- \frac{3}{6}+ \frac{8}{6}<y < \frac{3}{6}+ \frac{8}{6},

56<y<116,\frac{5}{6}<y<\frac{11}{6},

in interval notation: y(56,116).y \in (\frac{5}{6}, \frac{11}{6}).


We obtain the same intervals, so the first statement holds.

2.

f(x)=x6+5x;x[2,8]f(x)= |x-6| + |5 - x| ; x∈ [2,8]

Let's consider this function on three intervals:

f(x)=(x6)+(5x)=x+6+5x=f(x)=-(x-6) + (5 - x)=-x+6+5-x=

=2x+11;x[2,5)=-2x+11; x∈ [2,5)


f(x)=(x6)(5x)=x+65+x=1,x[5,6)f(x)=-(x-6) - (5 - x)=-x+6-5+x=1, x\in[5, 6)


f(x)=(x6)(5x)=x65+x=f(x)=(x-6) - (5 - x)=x-6-5+x=

=2x11,x[6,8]=2x-11, x\in[6, 8]


Now we can draw the graph of the function f:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS