1.
Let's solve the inequalities.
35<2x<311,
we can divide by 2:
65<x<611,
in interval notation: x∈(65,611).
∣y−34∣<21,
−21<y−34<21,
−21+34<y<21+34,
−63+68<y<63+68,
65<y<611,
in interval notation: y∈(65,611).
We obtain the same intervals, so the first statement holds.
2.
f(x)=∣x−6∣+∣5−x∣;x∈[2,8]
Let's consider this function on three intervals:
f(x)=−(x−6)+(5−x)=−x+6+5−x=
=−2x+11;x∈[2,5)
f(x)=−(x−6)−(5−x)=−x+6−5+x=1,x∈[5,6)
f(x)=(x−6)−(5−x)=x−6−5+x=
=2x−11,x∈[6,8]
Now we can draw the graph of the function f:
Comments