Answer to Question #346431 in Algebra for bookaddict

Question #346431

a. Expand (𝑎+𝑏)5. Hence find the coefficient of 𝑥 in the expansion of (4𝑥+2/9𝑥)5

b. The coefficient of 𝑥2 in the expansion of (1+𝑥)n is 45. Given that 𝑛 is a positive integer, find the value of 𝑛.


1
Expert's answer
2022-05-31T13:45:16-0400

a.


(a+b)5=(50)a5+(51)a4b+(52)a3b2(a+b)^5=\dbinom{5}{0}a^5+\dbinom{5}{1}a^4b+\dbinom{5}{2}a^3b^2

+(53)a2b3+(54)ab4++(55)b5+\dbinom{5}{3}a^2b^3+\dbinom{5}{4}ab^4++\dbinom{5}{5}b^5

=a5+5a4b+10a3b2+10a2b3+5ab4+b5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5



(4x+29x)5=1024x5+5(256)(2)x49x(4x+\dfrac{2}{9x})^5=1024x^5+\dfrac{5(256)(2)x^4}{9x}

+10(64)(4)x381x2+10(16)(8)x2729x3+5(4)(16)x6561x4+\dfrac{10(64)(4)x^3}{81x^2}+\dfrac{10(16)(8)x^2}{729x^3}+\dfrac{5(4)(16)x}{6561x^4}

+32x459049x5=1024x5+2560x39+2560x81+\dfrac{32x^4}{59049x^5}=1024x^5+\dfrac{2560x^3}{9}+\dfrac{2560x}{81}

+1280729x+3206561x3+3259049x5+\dfrac{1280}{729x}+\dfrac{320}{6561x^3}+\dfrac{32}{59049x^5}

b.


(1+x)n=(n0)+(n1)x+(n2)x2+...(1+x)^n=\dbinom{n}{0}+\dbinom{n}{1}x+\dbinom{n}{2}x^2+...

(n2)=45\dbinom{n}{2}=45

n(n1)2=45\dfrac{n(n-1)}{2}=45

n(n1)=90,n>0n(n-1)=90, n>0

Then n=10n=10



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment