If p2 +48 is equal to -14p then we have the next equation:
p 2 + 48 = − 14 p , p^2+48=-14p, p 2 + 48 = − 14 p ,
p 2 + 14 p + 48 = 0. p^2+14p+48=0. p 2 + 14 p + 48 = 0.
To solve this quadratic equation, let's find its discrininant:
D = b 2 − 4 a c = 1 4 2 − 4 ⋅ 1 ⋅ 48 = 196 − 192 = 4. D=b^2-4ac=14^2-4\cdot 1\cdot 48=196-192=4. D = b 2 − 4 a c = 1 4 2 − 4 ⋅ 1 ⋅ 48 = 196 − 192 = 4.
As D > 0 D>0 D > 0 the equation has two real distinct roots:
p 1 = − b − D 2 a = − 14 − 2 2 = − 8 , p_1=\frac{-b-\sqrt{D}}{2a}=\frac{-14-2}{2}=-8, p 1 = 2 a − b − D = 2 − 14 − 2 = − 8 ,
p 2 = − b + D 2 a = − 14 + 2 2 = − 6. p_2=\frac{-b+\sqrt{D}}{2a}=\frac{-14+2}{2}=-6. p 2 = 2 a − b + D = 2 − 14 + 2 = − 6.
So, there are two values of p: -8 and -6, such that p2 +48 is equal to -14p:
At p = − 8 : p=-8: p = − 8 :
( − 8 ) 2 + 48 = 64 + 48 = 112 = − 14 ⋅ ( − 8 ) . (-8)^2+48=64+48=112=-14\cdot (-8). ( − 8 ) 2 + 48 = 64 + 48 = 112 = − 14 ⋅ ( − 8 ) .
At p = − 6 : p=-6: p = − 6 :
( − 6 ) 2 + 48 = 36 + 48 = 84 = − 14 ⋅ ( − 6 ) . (-6)^2+48=36+48=84=-14\cdot (-6). ( − 6 ) 2 + 48 = 36 + 48 = 84 = − 14 ⋅ ( − 6 ) .
Answer: p=-8 and p=-6.
Comments