Answer to Question #272180 in Algebra for Mimi

Question #272180

 Find all rational solutions of x4−6x3+22x2−30x+13=0


1
Expert's answer
2021-11-29T15:22:30-0500

x46x3+22x230x+13=0x^4−6x^3+22x^2−30x+13=0

Let f(x) = x4−6x3+22x2−30x+13

f(1)=16+2230+13=0f(1) = 1-6+22-30+13=0

So, (x1)(x-1) is a factor of f(x).f(x).



So, x46x3+22x230x+13=(x1)x^4−6x^3+22x^2−30x+13 = (x-1) (x35x2+17x13x^3-5x^2+17x-13 )

Let g(x)=x35x2+17x13g(x)=x^3-5x^2+17x-13

g(1)=15+1713=0g(1)=1-5+17-13=0

So, (x1)(x-1) is a factor of g(x).g(x).



Thus, f(x)=(x1).g(x)=(x1)(x1)(x24x+13)f(x)=(x-1).g(x)=(x-1)(x-1)(x^2-4x+13)

Now, put (x24x+13)=0(x^2-4x+13)=0

Using Quadratic formula:

x=4±16522=4±6i2=2±3ix=\frac{4\pm\sqrt{16-52}}{2}=\frac{4\pm6i}{2}=2\pm3i

Hence, the solution are x=1,1,2+3i,23ix=1,1,2+3i,2-3i and rational solutions are x=1,1x=1,1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment