x4−6x3+22x2−30x+13=0
Let f(x) = x4−6x3+22x2−30x+13
f(1)=1−6+22−30+13=0
So, (x−1) is a factor of f(x).
So, x4−6x3+22x2−30x+13=(x−1) (x3−5x2+17x−13 )
Let g(x)=x3−5x2+17x−13
g(1)=1−5+17−13=0
So, (x−1) is a factor of g(x).
Thus, f(x)=(x−1).g(x)=(x−1)(x−1)(x2−4x+13)
Now, put (x2−4x+13)=0
Using Quadratic formula:
x=24±16−52=24±6i=2±3i
Hence, the solution are x=1,1,2+3i,2−3i and rational solutions are x=1,1
Comments
Leave a comment