Suppose a,a+d,a+2d are the roots of the cubic equation
x3+27x2+p=0 Then
x3+27x2+p=(x−a)(x−(a+d))(x−(a+2d)) We have
a+a+d+a+2d=−127
a(a+d)+a(a+2d)+(a+d)(a+2d)=10
a(a+d)(a+2d)=−1p
d=−9−a
a(−9)+a(−a−18)+(−9)(−a−18)=0
−9a−a2−18a+9a+162=0
a2+18a−162=0
D=(18)2−4(1)(−162)=972
a=2(1)−18±972=−9±93
a=−9−93,d=93
p=−(−9−93)(−9)(−9+93)=−1458
a=−9+93,d=−93
p=−(−9+93)(−9)(−9−93)=−1458
p=−1458
Comments