Suppose a , a + d , a + 2 d a, a+d, a+2d a , a + d , a + 2 d are the roots of the cubic equation
x 3 + 27 x 2 + p = 0 x^3 + 27x^2 + p = 0 x 3 + 27 x 2 + p = 0 Then
x 3 + 27 x 2 + p = ( x − a ) ( x − ( a + d ) ) ( x − ( a + 2 d ) ) x^3 + 27x^2 + p =(x-a)(x-(a+d))(x-(a+2d)) x 3 + 27 x 2 + p = ( x − a ) ( x − ( a + d )) ( x − ( a + 2 d )) We have
a + a + d + a + 2 d = − 27 1 a+a+d+a+2d=-\dfrac{27}{1} a + a + d + a + 2 d = − 1 27
a ( a + d ) + a ( a + 2 d ) + ( a + d ) ( a + 2 d ) = 0 1 a(a+d)+a(a+2d)+(a+d)(a+2d)=\dfrac{0}{1} a ( a + d ) + a ( a + 2 d ) + ( a + d ) ( a + 2 d ) = 1 0
a ( a + d ) ( a + 2 d ) = − p 1 a(a+d)(a+2d)=-\dfrac{p}{1} a ( a + d ) ( a + 2 d ) = − 1 p
d = − 9 − a d=-9-a d = − 9 − a
a ( − 9 ) + a ( − a − 18 ) + ( − 9 ) ( − a − 18 ) = 0 a(-9)+a(-a-18)+(-9)(-a-18)=0 a ( − 9 ) + a ( − a − 18 ) + ( − 9 ) ( − a − 18 ) = 0
− 9 a − a 2 − 18 a + 9 a + 162 = 0 -9a-a^2-18a+9a+162=0 − 9 a − a 2 − 18 a + 9 a + 162 = 0
a 2 + 18 a − 162 = 0 a^2+18a-162=0 a 2 + 18 a − 162 = 0
D = ( 18 ) 2 − 4 ( 1 ) ( − 162 ) = 972 D=(18)^2-4(1)(-162)=972 D = ( 18 ) 2 − 4 ( 1 ) ( − 162 ) = 972
a = − 18 ± 972 2 ( 1 ) = − 9 ± 9 3 a=\dfrac{-18\pm\sqrt{972}}{2(1)}=-9\pm9\sqrt{3} a = 2 ( 1 ) − 18 ± 972 = − 9 ± 9 3
a = − 9 − 9 3 , d = 9 3 a=-9-9\sqrt{3}, d=9\sqrt{3} a = − 9 − 9 3 , d = 9 3
p = − ( − 9 − 9 3 ) ( − 9 ) ( − 9 + 9 3 ) = − 1458 p=-(-9-9\sqrt{3})(-9)(-9+9\sqrt{3})=-1458 p = − ( − 9 − 9 3 ) ( − 9 ) ( − 9 + 9 3 ) = − 1458
a = − 9 + 9 3 , d = − 9 3 a=-9+9\sqrt{3}, d=-9\sqrt{3} a = − 9 + 9 3 , d = − 9 3
p = − ( − 9 + 9 3 ) ( − 9 ) ( − 9 − 9 3 ) = − 1458 p=-(-9+9\sqrt{3})(-9)(-9-9\sqrt{3})=-1458 p = − ( − 9 + 9 3 ) ( − 9 ) ( − 9 − 9 3 ) = − 1458
p = − 1458 p=-1458 p = − 1458
Comments