Question #245414

Equation x^3 + 27x^2 + p = 0 has three different real solutions that form an arithmetic progression. Find the smallest value of parameter p.


1
Expert's answer
2021-10-04T14:08:33-0400

Suppose a,a+d,a+2da, a+d, a+2d are the roots of the cubic equation


x3+27x2+p=0x^3 + 27x^2 + p = 0

Then


x3+27x2+p=(xa)(x(a+d))(x(a+2d))x^3 + 27x^2 + p =(x-a)(x-(a+d))(x-(a+2d))

We have


a+a+d+a+2d=271a+a+d+a+2d=-\dfrac{27}{1}

a(a+d)+a(a+2d)+(a+d)(a+2d)=01a(a+d)+a(a+2d)+(a+d)(a+2d)=\dfrac{0}{1}

a(a+d)(a+2d)=p1a(a+d)(a+2d)=-\dfrac{p}{1}

d=9ad=-9-a

a(9)+a(a18)+(9)(a18)=0a(-9)+a(-a-18)+(-9)(-a-18)=0

9aa218a+9a+162=0-9a-a^2-18a+9a+162=0

a2+18a162=0a^2+18a-162=0

D=(18)24(1)(162)=972D=(18)^2-4(1)(-162)=972

a=18±9722(1)=9±93a=\dfrac{-18\pm\sqrt{972}}{2(1)}=-9\pm9\sqrt{3}

a=993,d=93a=-9-9\sqrt{3}, d=9\sqrt{3}

p=(993)(9)(9+93)=1458p=-(-9-9\sqrt{3})(-9)(-9+9\sqrt{3})=-1458

a=9+93,d=93a=-9+9\sqrt{3}, d=-9\sqrt{3}

p=(9+93)(9)(993)=1458p=-(-9+9\sqrt{3})(-9)(-9-9\sqrt{3})=-1458



p=1458p=-1458


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS