Equation x^3 + 27x^2 + p = 0 has three different real solutions that form an arithmetic progression. Find the smallest value of parameter p.
Suppose "a, a+d, a+2d" are the roots of the cubic equation
Then
We have
"a(a+d)+a(a+2d)+(a+d)(a+2d)=\\dfrac{0}{1}"
"a(a+d)(a+2d)=-\\dfrac{p}{1}"
"d=-9-a"
"a(-9)+a(-a-18)+(-9)(-a-18)=0"
"-9a-a^2-18a+9a+162=0"
"a^2+18a-162=0"
"D=(18)^2-4(1)(-162)=972"
"a=\\dfrac{-18\\pm\\sqrt{972}}{2(1)}=-9\\pm9\\sqrt{3}"
"a=-9-9\\sqrt{3}, d=9\\sqrt{3}"
"p=-(-9-9\\sqrt{3})(-9)(-9+9\\sqrt{3})=-1458"
"a=-9+9\\sqrt{3}, d=-9\\sqrt{3}"
"p=-(-9+9\\sqrt{3})(-9)(-9-9\\sqrt{3})=-1458"
"p=-1458"
Comments
Leave a comment