Answer to Question #245316 in Algebra for minu

Question #245316


If m, n and p are the roots of the polynomial x3+5x-8 and sum of the roots is 0

0, then find the value of m3+n3+p3.



.



1
Expert's answer
2021-10-04T19:25:14-0400
m+n+p=01=0m+n+p=-\dfrac{0}{1}=0

mn+np+mp=51=5mn+np+mp=\dfrac{5}{1}=5

mnp=81=8mnp=-\dfrac{8}{1}=-8

(m+n+p)3=m3+3m2(n+p)+3m(n+p)2+(n+p)3(m+n+p)^3=m^3+3m^2(n+p)+3m(n+p)^2+(n+p)^3

=m3+3m2n+3m2p+3mn2+6mnp+3mp2=m^3+3m^2n+3m^2p+3mn^2+6mnp+3mp^2

+n3+3n2p+3np2+p3+n^3+3n^2p+3np^2+p^3

=(m3+n3+p3)3mnp+3m(mn+mp+np)=(m^3+n^3+p^3)-3mnp+3m(mn+mp+np)

+3n(mn+mp+np)+3p(mn+mp+np)+3n(mn+mp+np)+3p(mn+mp+np)

=(m3+n3+p3)3(8)+3m(5)+3n(5)=(m^3+n^3+p^3)-3(-8)+3m(5)+3n(5)

+3p(5)=(m3+n3+p3)+24+15(m+n+p)+3p(5)=(m^3+n^3+p^3)+24+15(m+n+p)

=(m3+n3+p3)+24+15(0)==(m^3+n^3+p^3)+24+15(0)=

=(m3+n3+p3)+24=(0)3=(m^3+n^3+p^3)+24=(0)^3

Then


m3+n3+p3=24m^3+n^3+p^3=-24


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment