Let f(x)=x^3-6x^2+3x+10f(x)=x3−6x2+3x+10, then choose the set of correct options regarding f(x).
"x^2(x+1)-7x(x+1)+10(x+1)=0"
"(x+1)(x^2-7x+10)=0"
"(x+1)(x-2)(x-5)=0"
"x_1=-1, x_2=2, x_3=5"
If "x<-1," then "f(x)<0."
If "-1<x<2," then "f(x)>0."
If "2<x<5," then "f(x)<0."
If "x>5," then "f(x)>0."
Answer:
5. If "x\\in(-1, 2)\\cup(5,\\infin)," then "f(x)" is positive.
Comments
Leave a comment