Let f(x)=x^3-6x^2+3x+10f(x)=x3−6x2+3x+10, then choose the set of correct options regarding f(x).
If x<−1,x<-1,x<−1, then f(x)<0.f(x)<0.f(x)<0.
If −1<x<2,-1<x<2,−1<x<2, then f(x)>0.f(x)>0.f(x)>0.
If 2<x<5,2<x<5,2<x<5, then f(x)<0.f(x)<0.f(x)<0.
If x>5,x>5,x>5, then f(x)>0.f(x)>0.f(x)>0.
Answer:
5. If x∈(−1,2)∪(5,∞),x\in(-1, 2)\cup(5,\infin),x∈(−1,2)∪(5,∞), then f(x)f(x)f(x) is positive.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments