Question #245304

Let f(x)=x^3-6x^2+3x+10f(x)=x3−6x2+3x+10, then choose the set of correct options regarding f(x).

  1. If x \in [0, 1] \cup (10, \infty)x∈[0,1]∪(10,∞), then f(x)is positive.
  2. If x \in (-\infty, -1] \cup (3, 6)x∈(−∞,−1]∪(3,6), then f(x) is negative.
  3. If x \in (-\infty, 1] \cup (2, 5)x∈(−∞,1]∪(2,5), then f(x) is negative.
  4. If x \in [-2, 2] \cup (5, \infty)x∈[−2,2]∪(5,∞), then f(x) is positive.
  5. If x \in (-1, 2) \cup (5, \infty)x∈(−1,2)∪(5,∞), then f(x)is positive.




1
Expert's answer
2021-10-04T04:57:55-0400
f(x)=0=>x36x2+3x+10=0f(x)=0=>x^3-6x^2+3x+10=0

x2(x+1)7x(x+1)+10(x+1)=0x^2(x+1)-7x(x+1)+10(x+1)=0

(x+1)(x27x+10)=0(x+1)(x^2-7x+10)=0

(x+1)(x2)(x5)=0(x+1)(x-2)(x-5)=0

x1=1,x2=2,x3=5x_1=-1, x_2=2, x_3=5

If x<1,x<-1, then f(x)<0.f(x)<0.

If 1<x<2,-1<x<2, then f(x)>0.f(x)>0.

If 2<x<5,2<x<5, then f(x)<0.f(x)<0.

If x>5,x>5, then f(x)>0.f(x)>0.


Answer:

5. If x(1,2)(5,),x\in(-1, 2)\cup(5,\infin), then f(x)f(x) is positive.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS