Given x−2 is a factor of the expression x3+ax2+bx+1
x−2=0
x=2
Substituting 2 in the equation x3+ax2+bx+1
23+a(22)+b(2)+1=0
8+4a+2b+1=0
4a+2b=−9........................i
Given x+2 is a factor of the expression x3+ax2+bx+1
x+2=0
x=−2
Substituting -2 in the equation x3+ax2+bx+1
−23+a(−22)+b(−2)+1=0
−8+4a−2b+1=0
4a−2b=7........................ii
Solving equation i and ii by substitution
4a+2b=−9........................i
4a−2b=7.........................ii
4a=7+2b
Hence 7+2b+2b=−9
7+4b=−9
4b=−16
b=−4
4a+2(−4)=−9
4a=−1
a=−41
The sum of a and b will be
a+b=−4−41=−417
Comments