Given "x-2" is a factor of the expression "x^3+ax^2+bx+1"
"x-2=0"
"x=2"
Substituting 2 in the equation "x^3+ax^2+bx+1"
"2^3+a(2^2)+b(2)+1=0"
"8+4a+2b+1=0"
"4a+2b=-9........................i"
Given "x+2" is a factor of the expression "x^3+ax^2+bx+1"
"x+2=0"
"x=-2"
Substituting -2 in the equation "x^3+ax^2+bx+1"
"-2^3+a(-2^2)+b(-2)+1=0"
"-8+4a-2b+1=0"
"4a-2b=7........................ii"
Solving equation i and ii by substitution
"4a+2b=-9........................i"
"4a-2b=7.........................ii"
"4a=7+2b"
Hence "7+2b+2b=-9"
"7+4b=-9"
"4b=-16"
"b=-4"
"4a+2(-4)=-9"
"4a=-1"
"a=-\\frac{1}{4}"
The sum of a and b will be
"a+b = -4-\\frac{1}{4}=-\\frac{17}{4}"
Comments
Leave a comment