( x 6 − 8 ) ÷ ( x − 2 ) (x^6-8)÷(x-\sqrt{2}) ( x 6 − 8 ) ÷ ( x − 2 )
x 6 − 8 x − 2 \frac{x^6-8}{x-\sqrt{2}} x − 2 x 6 − 8
using a 2 − b 3 = ( a − b ) ( a + b ) , a^2-b^3=(a-b)(a+b), a 2 − b 3 = ( a − b ) ( a + b ) , factor the expression
( x 3 − 8 ) × ( x 3 + 8 x − 2 \frac{(x^3-\sqrt8)×(x^3+\sqrt{8}}{x-\sqrt{2}} x − 2 ( x 3 − 8 ) × ( x 3 + 8
Simplify the expressions
( x 3 − 2 2 ) × ( x 3 + 2 2 x − 2 \frac{(x^3-2\sqrt2)×(x^3+2\sqrt{2}}{x-\sqrt{2}} x − 2 ( x 3 − 2 2 ) × ( x 3 + 2 2
Factor the expression
( x − 2 ) × ( x 2 + 2 + 2 ) × ( x 3 + 2 2 ) x − 2 \frac{(x-\sqrt2)×(x^2+\sqrt{2}+2)×(x^3+2\sqrt{2})}{x-\sqrt{2}} x − 2 ( x − 2 ) × ( x 2 + 2 + 2 ) × ( x 3 + 2 2 )
Reduce the fraction
( x 2 + 2 x + 2 ) × ( x 3 + 2 2 ) (x^2+\sqrt{2}x+2)×(x^3+2\sqrt{2}) ( x 2 + 2 x + 2 ) × ( x 3 + 2 2 )
x 5 + 2 2 x 2 + 2 x 4 + 4 x + 2 x 3 + 4 2 x^5+2\sqrt{2}x^2+\sqrt{2}x^4+4x+2x^3+4\sqrt{2} x 5 + 2 2 x 2 + 2 x 4 + 4 x + 2 x 3 + 4 2
Hence the polynomial x − 2 x-\sqrt2 x − 2
Comments