40, The polynomial x6 – 8 is divisible by?
A. X-√2
B. X2 + 2
C. X3 -3
D. None of the above
"(x^6-8)\u00f7(x-\\sqrt{2})"
"\\frac{x^6-8}{x-\\sqrt{2}}"
using "a^2-b^3=(a-b)(a+b)," factor the expression
"\\frac{(x^3-\\sqrt8)\u00d7(x^3+\\sqrt{8}}{x-\\sqrt{2}}"
Simplify the expressions
"\\frac{(x^3-2\\sqrt2)\u00d7(x^3+2\\sqrt{2}}{x-\\sqrt{2}}"
Factor the expression
"\\frac{(x-\\sqrt2)\u00d7(x^2+\\sqrt{2}+2)\u00d7(x^3+2\\sqrt{2})}{x-\\sqrt{2}}"
Reduce the fraction
"(x^2+\\sqrt{2}x+2)\u00d7(x^3+2\\sqrt{2})"
"x^5+2\\sqrt{2}x^2+\\sqrt{2}x^4+4x+2x^3+4\\sqrt{2}"
Hence the polynomial "x-\\sqrt2"
Comments
Leave a comment