Question #228620

, The solutions of the inequality IIxI-1I <=1/2 are ?



1
Expert's answer
2021-09-02T12:30:49-0400

x112\lvert \lvert x \rvert - 1\rvert \leq \cfrac {1}{2}


There are 3 cases:


1) x1=0\lvert x \rvert - 1 = 0

2) x1>0\lvert x \rvert - 1 > 0

3) x1<0\lvert x \rvert - 1 < 0


1) x1=0\lvert x \rvert - 1 = 0

x=1x{1;1}\lvert x \rvert = 1 \\ x \in \lbrace -1; 1\rbrace - satisfies the inequality.


2) x1>0:\lvert x \rvert - 1 > 0 :


0<x1121<x320 < \lvert x \rvert - 1 \leq \cfrac{1}{2} \\ 1 < \lvert x \rvert \leq \cfrac{3}{2}


Answer: x[32;1}{1;32]x \in \Big [ - \cfrac {3}{2} ; -1 \Big \} \bigcup \Big \{ 1; \cfrac{3}{2} \Big ]


3) x1<0:\lvert x \rvert - 1 < 0 :


12x1<012x<1-\cfrac{1}{2} \leq \lvert x \rvert - 1 < 0 \\ \cfrac{1}{2} \leq \lvert x \rvert < 1


Answer: x{1;12][12;1}x \in \Big \{ - 1 ; - \cfrac{1}{2} \Big ] \bigcup \Big [ \cfrac{1}{2} ; 1 \Big \}



Final answer: x[32;12][12;32]x \in \Big [ - \cfrac{3}{2}; - \cfrac{1}{2} \Big ] \bigcup \Big [ \cfrac{1}{2} ; \cfrac {3}{2} \Big ]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS