, The solutions of the inequality IIxI-1I <=1/2 are ?
"\\lvert \\lvert x \\rvert - 1\\rvert \\leq \\cfrac {1}{2}"
There are 3 cases:
1) "\\lvert x \\rvert - 1 = 0"
2) "\\lvert x \\rvert - 1 > 0"
3) "\\lvert x \\rvert - 1 < 0"
1) "\\lvert x \\rvert - 1 = 0"
"\\lvert x \\rvert = 1 \\\\\nx \\in \\lbrace -1; 1\\rbrace" - satisfies the inequality.
2) "\\lvert x \\rvert - 1 > 0 :"
"0 < \\lvert x \\rvert - 1 \\leq \\cfrac{1}{2} \\\\\n1 < \\lvert x \\rvert \\leq \\cfrac{3}{2}"
Answer: "x \\in \\Big [ - \\cfrac {3}{2} ; -1 \\Big \\} \\bigcup \\Big \\{ 1; \\cfrac{3}{2} \\Big ]"
3) "\\lvert x \\rvert - 1 < 0 :"
"-\\cfrac{1}{2} \\leq \\lvert x \\rvert - 1 < 0 \\\\\n\\cfrac{1}{2} \\leq \\lvert x \\rvert < 1"
Answer: "x \\in \\Big \\{ - 1 ; - \\cfrac{1}{2} \\Big ] \\bigcup \\Big [ \\cfrac{1}{2} ; 1 \\Big \\}"
Comments
Leave a comment