Answer to Question #228621 in Algebra for Keleko Pierre Mich

Question #228621

, Let ABC be a right-angle triangle in B and of area S. Let a be the internal angle with vertex in A and we consider the point D on the side BC such that the segment AD can form an angle of width a/2 with AB then the area of triangle ABC is ?

A.     Greater than S/2

B.     Equal to S/2

C.     Less than S/2

None of the above


1
Expert's answer
2021-08-26T08:52:38-0400



Area of triangle ABC =s

S=12×AB×BC....(1)S=\frac{1}{2}×AB×BC....(1)

Area of triangle ABD=s

S1=12×AB×BD....(2)S_1=\frac{1}{2}×AB×BD....(2)

From DABC

tan a=BCABBC=AB=AB  tan a.....(3)tan \space a=\frac{BC}{AB}\\BC=AB=AB \space\space tan \space a.....(3)

From DABD

tana2=BDABBD=AB=AB tana2....(4)tan\frac{a}{2}=\frac{BD}{AB}\\BD=AB=AB \space tan \frac {a}{2}....(4)

We put value of BC and BD in equition 1 and 2

S=12×AB×AB tan aS=\frac{1}{2}×AB×AB\space tan \space a

S=12(AB)2tan a......(5)S1=12(AB)2tana2......(6)S=\frac{1}{2}(AB)^2 tan\space a......(5)\\S_1=\frac{1}{2}(AB)^2 tan\frac{a}{2}......(6)


Dividing equition 5 by 6 we get

ss1=12(AB)2tan a12(AB)2tana2s1=tana2tan ass1=tana22tana21tan2a2ss1=(1tan2a2)s2....(7)\frac{s}{s_1}=\frac{\frac{1}{2}(AB)^2 tan\space a}{\frac{1}{2}(AB)^2 tan\frac{ a}{2}}\\s_1=\frac{tan\frac{a}{2}}{tan \space a}s\\s_1=\frac{tan\frac{a}{2}}{\frac{2tan\frac{a}{2}}{1-tan^2\frac{a}{2}}}s\\s_1=(1-tan^2\frac{a}{2})\frac{s}{2}....(7)

Angle

a(0°,90°),a2(0°,45°)a(0°,90°),\frac{a}{2}(0°,45°)

And

tana2(0,1)1tan2a2(0,1)tan \frac{a}{2}(0,1)\\1-tan^2\frac{a}{2}(0,1)


Since 1tan2a21-tan^2\frac{a}{2} belongs from 0 to 1

Therefore from equition 7 we can conclude that s1 is less than s2\frac{s}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment