, Let ABC be a right-angle triangle in B and of area S. Let a be the internal angle with vertex in A and we consider the point D on the side BC such that the segment AD can form an angle of width a/2 with AB then the area of triangle ABC is ?
A. Greater than S/2
B. Equal to S/2
C. Less than S/2
None of the above
Area of triangle ABC =s
"S=\\frac{1}{2}\u00d7AB\u00d7BC....(1)"
Area of triangle ABD=s
"S_1=\\frac{1}{2}\u00d7AB\u00d7BD....(2)"
From DABC
"tan \\space a=\\frac{BC}{AB}\\\\BC=AB=AB \\space\\space tan \\space a.....(3)"
From DABD
"tan\\frac{a}{2}=\\frac{BD}{AB}\\\\BD=AB=AB \\space tan \\frac {a}{2}....(4)"
We put value of BC and BD in equition 1 and 2
"S=\\frac{1}{2}\u00d7AB\u00d7AB\\space tan \\space a"
"S=\\frac{1}{2}(AB)^2 tan\\space a......(5)\\\\S_1=\\frac{1}{2}(AB)^2 tan\\frac{a}{2}......(6)"
Dividing equition 5 by 6 we get
"\\frac{s}{s_1}=\\frac{\\frac{1}{2}(AB)^2 tan\\space a}{\\frac{1}{2}(AB)^2 tan\\frac{ a}{2}}\\\\s_1=\\frac{tan\\frac{a}{2}}{tan \\space a}s\\\\s_1=\\frac{tan\\frac{a}{2}}{\\frac{2tan\\frac{a}{2}}{1-tan^2\\frac{a}{2}}}s\\\\s_1=(1-tan^2\\frac{a}{2})\\frac{s}{2}....(7)"
Angle
"a(0\u00b0,90\u00b0),\\frac{a}{2}(0\u00b0,45\u00b0)"
And
"tan \\frac{a}{2}(0,1)\\\\1-tan^2\\frac{a}{2}(0,1)"
Since "1-tan^2\\frac{a}{2}" belongs from 0 to 1
Therefore from equition 7 we can conclude that s1 is less than "\\frac{s}{2}"
Comments
Leave a comment