Answer to Question #217590 in Algebra for Bhatti

Question #217590

Prove that 

∑_(i=5)^20▒〖3.2^i 〗= ∑_(k=0)^15▒〖96.2^k 〗


1
Expert's answer
2021-07-19T16:15:31-0400

i=5203.2i=i=0203.2ii=043.2i\displaystyle{\sum_{i=5}^{20} }3.2^i=\displaystyle{\sum_{i=0}^{20} }3.2^i-\displaystyle{\sum_{i=0}^{4} }3.2^i


i=0203.2i=13.22113.2\displaystyle{\sum_{i=0}^{20} }3.2^i=\frac{1-3.2^{21}}{1-3.2}


i=043.2i=13.2513.2\displaystyle{\sum_{i=0}^{4} }3.2^i=\frac{1-3.2^{5}}{1-3.2}


k=01596.2k=196.216196.2\displaystyle{\sum_{k=0}^{15} }96.2^k=\frac{1-96.2^{16}}{1-96.2}



i=5203.2i=18438554032.61773674904295571456\displaystyle{\sum_{i=5}^{20} }3.2^i=18438554032.61773674904295571456


k=01596.2k=565150614585858182318186506187.03\displaystyle{\sum_{k=0}^{15} }96.2^k=565150614585858182318186506187.03



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment