Prove that
∑_(i=5)^20▒〖3.2^i 〗= ∑_(k=0)^15▒〖96.2^k 〗
"\\displaystyle{\\sum_{i=5}^{20} }3.2^i=\\displaystyle{\\sum_{i=0}^{20} }3.2^i-\\displaystyle{\\sum_{i=0}^{4} }3.2^i"
"\\displaystyle{\\sum_{i=0}^{20} }3.2^i=\\frac{1-3.2^{21}}{1-3.2}"
"\\displaystyle{\\sum_{i=0}^{4} }3.2^i=\\frac{1-3.2^{5}}{1-3.2}"
"\\displaystyle{\\sum_{k=0}^{15} }96.2^k=\\frac{1-96.2^{16}}{1-96.2}"
"\\displaystyle{\\sum_{i=5}^{20} }3.2^i=18438554032.61773674904295571456"
"\\displaystyle{\\sum_{k=0}^{15} }96.2^k=565150614585858182318186506187.03"
Comments
Leave a comment