Prove that
∑_(i=5)^20▒〖3.2^i 〗= ∑_(k=0)^15▒〖96.2^k 〗
∑i=5203.2i=∑i=0203.2i−∑i=043.2i\displaystyle{\sum_{i=5}^{20} }3.2^i=\displaystyle{\sum_{i=0}^{20} }3.2^i-\displaystyle{\sum_{i=0}^{4} }3.2^ii=5∑203.2i=i=0∑203.2i−i=0∑43.2i
∑i=0203.2i=1−3.2211−3.2\displaystyle{\sum_{i=0}^{20} }3.2^i=\frac{1-3.2^{21}}{1-3.2}i=0∑203.2i=1−3.21−3.221
∑i=043.2i=1−3.251−3.2\displaystyle{\sum_{i=0}^{4} }3.2^i=\frac{1-3.2^{5}}{1-3.2}i=0∑43.2i=1−3.21−3.25
∑k=01596.2k=1−96.2161−96.2\displaystyle{\sum_{k=0}^{15} }96.2^k=\frac{1-96.2^{16}}{1-96.2}k=0∑1596.2k=1−96.21−96.216
∑i=5203.2i=18438554032.61773674904295571456\displaystyle{\sum_{i=5}^{20} }3.2^i=18438554032.61773674904295571456i=5∑203.2i=18438554032.61773674904295571456
∑k=01596.2k=565150614585858182318186506187.03\displaystyle{\sum_{k=0}^{15} }96.2^k=565150614585858182318186506187.03k=0∑1596.2k=565150614585858182318186506187.03
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment