a1=n1=20⋅n1
a2=2n1=21⋅n1
a3=4n1=22⋅n1
Then
ak=2k−1⋅n1
So
a16=215⋅n1=32768n1
We find the required sum as the sum of the first 16 terms of the geometric progression with the first term a1=n1 and the denominator q=21 :
S16=1−qa1(1−q16)=1−21n1(1−(21)16)=32768n65535
If n=156 then
S16=32768⋅15665535=170393621845
Answer: a16=32768n1 , S16=170393621845
Comments