Question #217550


For the given sequence 1/n, 1/2n, 1/4n,…  Find the 16th term. Find sum of first sixteen terms where n is 156 


1
Expert's answer
2021-07-16T11:17:47-0400

a1=1n=120n{a_1} = \frac{1}{n} = \frac{1}{{{2^0} \cdot n}}

a2=12n=121n{a_2} = \frac{1}{{2n}} = \frac{1}{{{2^1} \cdot n}}

a3=14n=122n{a_3} = \frac{1}{{4n}} = \frac{1}{{{2^2} \cdot n}}

Then

ak=12k1n{a_k} = \frac{1}{{{2^{k - 1}} \cdot n}}

So

a16=1215n=132768n{a_{16}} = \frac{1}{{{2^{15}} \cdot n}} = \frac{1}{{{\rm{32768}}n}}

We find the required sum as the sum of the first 16 terms of the geometric progression with the first term a1=1n{a_1} = \frac{1}{n} and the denominator q=12q = \frac{1}{2} :

S16=a1(1q16)1q=1n(1(12)16)112=6553532768n{S_{16}} = \frac{{{a_1}\left( {1 - {q^{16}}} \right)}}{{1 - q}} = \frac{{\frac{1}{n}\left( {1 - {{\left( {\frac{1}{2}} \right)}^{16}}} \right)}}{{1 - \frac{1}{2}}} = \frac{{65535}}{{32768n}}

If n=156n=156 then

S16=6553532768156=218451703936{S_{16}} = \frac{{65535}}{{32768 \cdot 156}} = \frac{{21845}}{{1703936}}

Answer: a16=132768n{a_{16}} = \frac{1}{{{\rm{32768}}n}} , S16=218451703936{S_{16}} = \frac{{21845}}{{1703936}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS