Question #213698

a) find and classify the critical points of the functions f(x) = 2x^3 + 3x^2 - 12 x +1 into maximum, minimum and inflection points as appreciate.

(b) The sum of two positive numbers is S. find the maximum value of their product.



1
Expert's answer
2021-10-04T14:46:12-0400

(a)



f(x)=2x3+3x212x+1f(x) = 2x^3 + 3x^2 - 12 x +1

Domain: (,)(-\infin, \infin) as polynomial.

Find the first derivative with respect to xx



f(x)=(2x3+3x212x+1)=6x2+6x12f'(x)=( 2x^3 + 3x^2 - 12 x +1)'=6x^2+6x-12

Find the critical number(s)



f(x)=0=>6x2+6x12=0f'(x)=0=>6x^2+6x-12=06(x1)(x+2)=06(x-1)(x+2)=0

Critical numbers: 2,1.-2, 1.

By the First Derivative Test

If x<2,x<-2, then f(x)>0,f(x)f'(x)>0, f(x) increases.

If 2<x<1,-2<x<1, then f(x)<0,f(x)f'(x)<0, f(x) decreases.

If x>1,x>1, then f(x)>0,f(x)f'(x)>0, f(x) increases.




f(2)=2(2)3+3(2)212(2)+1=21f(-2)=2(-2)^3 + 3(-2)^2 - 12 (-2) +1=21f(1)=2(1)3+3(1)212(1)+1=6f(1)=2(1)^3 + 3(1)^2 - 12 (1) +1=-6

The function ff has a local maximum with value of 2121 at x=2.x=-2.

The function ff has a local minimum with value of 6-6 at x=1.x=1.


(b) Let x=x= the first number, x>0.x>0. Then the second number will be Sx.S-x.

Given Sx>0.S-x>0.

Their product will be



f(x)=x(Sx),0<x<Sf(x)=x(S-x), 0<x<S

Find the first derivative with respect to xx



f(x)=(x(Sx))=S2xf'(x)=( x(S-x))'=S-2x

Find the critical number(s)



f(x)=0=>S2x=0f'(x)=0=>S-2x=0x=12Sx=\dfrac{1}{2}S

Critical number: 12S.\dfrac{1}{2}S .

By the First Derivative Test

If x<12S,x<\dfrac{1}{2}S, then f(x)>0,f(x)f'(x)>0, f(x) increases.


If x>12S,x>\dfrac{1}{2}S, then f(x)<0,f(x)f'(x)<0, f(x) decreases.



f(12S)=12S(S12S)=14S2f(\dfrac{1}{2}S)=\dfrac{1}{2}S(S-\dfrac{1}{2}S)=\dfrac{1}{4}S^2

The function ff has a local maximum with value of 14S2\dfrac{1}{4}S^2 at x=12S.x=\dfrac{1}{2}S.

Since the function ff has the only extremum, then the function ff has the absolute maximum with value of 14S2\dfrac{1}{4}S^2 at x=12Sx=\dfrac{1}{2}S for 0<x<S.0<x<S.


The maximum value of the product 14S2\dfrac{1}{4}S^2 will be if we take two equal positive numbers



I number=12S=II numberI\ number=\dfrac{1}{2}S=II\ number

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS