how many terms of the arithmetic series 10 + 8 + 6 +... will make the sum 24?
"10+8+6+---"
"a=10 [first\\space term]"
"d=a_2-a_1[common\\space difference]"
"=8-10\\\\=-2\\\\s_n=\\frac{n}{2}(2a+(n-1)d) (sum\\space of\\space n\\space terms)"
We know "s_n=24"
"\\therefore 24=\\frac{n}{2}(2(10)+(n-1)(-2))\\\\24=\\frac{n}{2}(20-2n+2)\\\\48=20n-2n^2+2n\\\\2n^2-22n+48=0\\\\n^2-11n+24=0\\\\n^2-8n-3n+24=0\\\\n(n-8)-3(n-8)=0\\\\(n-3)(n-8)=0\\\\(n-3)(n-8)=0\\\\\\implies n-3=0,\\space n-8=0\\\\n=3,\\space n=8"
no of terms =3,8
Comments
Leave a comment