Question #213687

how many terms of the arithmetic series 10 + 8 + 6 +... will make the sum 24?



1
Expert's answer
2021-08-17T10:18:01-0400

10+8+6+10+8+6+---

a=10[first term]a=10 [first\space term]

d=a2a1[common difference]d=a_2-a_1[common\space difference]

=810=2sn=n2(2a+(n1)d)(sum of n terms)=8-10\\=-2\\s_n=\frac{n}{2}(2a+(n-1)d) (sum\space of\space n\space terms)

We know sn=24s_n=24

24=n2(2(10)+(n1)(2))24=n2(202n+2)48=20n2n2+2n2n222n+48=0n211n+24=0n28n3n+24=0n(n8)3(n8)=0(n3)(n8)=0(n3)(n8)=0    n3=0, n8=0n=3, n=8\therefore 24=\frac{n}{2}(2(10)+(n-1)(-2))\\24=\frac{n}{2}(20-2n+2)\\48=20n-2n^2+2n\\2n^2-22n+48=0\\n^2-11n+24=0\\n^2-8n-3n+24=0\\n(n-8)-3(n-8)=0\\(n-3)(n-8)=0\\(n-3)(n-8)=0\\\implies n-3=0,\space n-8=0\\n=3,\space n=8


no of terms =3,8


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS