Answer to Question #213351 in Algebra for SLIMOP

Question #213351

A=S(Sa)(Sb)(Sc)A=\sqrt{S(S-a)(S-b)(S-c)}

Make S the subject of the formula


1
Expert's answer
2021-07-05T14:42:16-0400

A=S(Sa)(Sb)(Sc)A=\sqrt {S(S−a)(S−b)(S−c)}

square both sides of the equation to get:

A2=(S(Sa)(Sb)(Sc))2A^2=(\sqrt {S(S−a)(S−b)(S−c)})^2

A2=S(Sa)(Sb)(Sc)A^2={S(S−a)(S−b)(S−c)}

but S=a+b+c2S={a+b+c\over 2}

    A2=a+b+c2(a+b+c2a)(a+b+c2b)(a+b+c2c)\implies A^2={{a+b+c\over 2}({a+b+c\over 2}−a)({a+b+c\over 2}−b)({a+b+c\over 2}−c)}


=a+b+c2(a+b+c2a2)(a+b+c2b2)(a+b+c2c2)={{a+b+c\over 2}({a+b+c-2a\over 2})({a+b+c-2b\over 2})({a+b+c-2c\over 2})}


=a+b+c2(b+ca2)(a+cb2)(a+bc2)={{a+b+c\over 2}({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})}


Multiply both sides of the equation by 2a+b+c{2\over a+b+c}


    A2×2a+b+c=2a+b+c×a+b+c2(b+ca2)(a+cb2)(a+bc2)\implies A^2 \times {2\over a+b+c}={2\over a+b+c}\times {{a+b+c\over 2}({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})}


    2A2a+b+c=(b+ca2)(a+cb2)(a+bc2)\implies {2A^2\over a+b+c}={({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})}


    2A2a+b+c=(b+ca)(a+cb)(a+bc)8\implies {2A^2\over a+b+c}={{(b+c-a)(a+c-b)(a+b-c)\over 8}}


Cross multiply to get


    16A2=(a+b+c)(b+ca)(a+cb)(a+bc)\implies 16A^2=(a+b+c)(b+c-a)(a+c-b)(a+b-c)


make (a+b+c)(a+b+c) subject of the formula to get


(a+b+c)=16A2(b+ca)(a+cb)(a+bc)(a+b+c)={16A^2\over (b+c-a)(a+c-b)(a+b-c)}


Divide both sides by 2 to get


(a+b+c)2=16A22(b+ca)(a+cb)(a+bc){(a+b+c)\over 2}={16A^2\over 2 (b+c-a)(a+c-b)(a+b-c)}


    (a+b+c)2=8A2(b+ca)(a+cb)(a+bc)\implies {(a+b+c)\over 2}={8A^2\over (b+c-a)(a+c-b)(a+b-c)}


Recall that S=a+b+c2S={a+b+c\over 2}


\therefore S=8A2(b+ca)(a+cb)(a+bc)S={8A^2\over (b+c-a)(a+c-b)(a+b-c)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment