"A=\\sqrt{S(S-a)(S-b)(S-c)}"
Make S the subject of the formula
"A=\\sqrt {S(S\u2212a)(S\u2212b)(S\u2212c)}"
square both sides of the equation to get:
"A^2=(\\sqrt {S(S\u2212a)(S\u2212b)(S\u2212c)})^2"
"A^2={S(S\u2212a)(S\u2212b)(S\u2212c)}"
but "S={a+b+c\\over 2}"
"\\implies A^2={{a+b+c\\over 2}({a+b+c\\over 2}\u2212a)({a+b+c\\over 2}\u2212b)({a+b+c\\over 2}\u2212c)}"
"={{a+b+c\\over 2}({a+b+c-2a\\over 2})({a+b+c-2b\\over 2})({a+b+c-2c\\over 2})}"
"={{a+b+c\\over 2}({b+c-a\\over 2})({a+c-b\\over 2})({a+b-c\\over 2})}"
Multiply both sides of the equation by "{2\\over a+b+c}"
"\\implies A^2 \\times {2\\over a+b+c}={2\\over a+b+c}\\times {{a+b+c\\over 2}({b+c-a\\over 2})({a+c-b\\over 2})({a+b-c\\over 2})}"
"\\implies {2A^2\\over a+b+c}={({b+c-a\\over 2})({a+c-b\\over 2})({a+b-c\\over 2})}"
"\\implies {2A^2\\over a+b+c}={{(b+c-a)(a+c-b)(a+b-c)\\over 8}}"
Cross multiply to get
"\\implies 16A^2=(a+b+c)(b+c-a)(a+c-b)(a+b-c)"
make "(a+b+c)" subject of the formula to get
"(a+b+c)={16A^2\\over (b+c-a)(a+c-b)(a+b-c)}"
Divide both sides by 2 to get
"{(a+b+c)\\over 2}={16A^2\\over 2 (b+c-a)(a+c-b)(a+b-c)}"
"\\implies {(a+b+c)\\over 2}={8A^2\\over (b+c-a)(a+c-b)(a+b-c)}"
Recall that "S={a+b+c\\over 2}"
"\\therefore" "S={8A^2\\over (b+c-a)(a+c-b)(a+b-c)}"
Comments
Leave a comment