A = S ( S − a ) ( S − b ) ( S − c ) A=\sqrt {S(S−a)(S−b)(S−c)} A = S ( S − a ) ( S − b ) ( S − c )
square both sides of the equation to get:
A 2 = ( S ( S − a ) ( S − b ) ( S − c ) ) 2 A^2=(\sqrt {S(S−a)(S−b)(S−c)})^2 A 2 = ( S ( S − a ) ( S − b ) ( S − c ) ) 2
A 2 = S ( S − a ) ( S − b ) ( S − c ) A^2={S(S−a)(S−b)(S−c)} A 2 = S ( S − a ) ( S − b ) ( S − c )
but S = a + b + c 2 S={a+b+c\over 2} S = 2 a + b + c
⟹ A 2 = a + b + c 2 ( a + b + c 2 − a ) ( a + b + c 2 − b ) ( a + b + c 2 − c ) \implies A^2={{a+b+c\over 2}({a+b+c\over 2}−a)({a+b+c\over 2}−b)({a+b+c\over 2}−c)} ⟹ A 2 = 2 a + b + c ( 2 a + b + c − a ) ( 2 a + b + c − b ) ( 2 a + b + c − c )
= a + b + c 2 ( a + b + c − 2 a 2 ) ( a + b + c − 2 b 2 ) ( a + b + c − 2 c 2 ) ={{a+b+c\over 2}({a+b+c-2a\over 2})({a+b+c-2b\over 2})({a+b+c-2c\over 2})} = 2 a + b + c ( 2 a + b + c − 2 a ) ( 2 a + b + c − 2 b ) ( 2 a + b + c − 2 c )
= a + b + c 2 ( b + c − a 2 ) ( a + c − b 2 ) ( a + b − c 2 ) ={{a+b+c\over 2}({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})} = 2 a + b + c ( 2 b + c − a ) ( 2 a + c − b ) ( 2 a + b − c )
Multiply both sides of the equation by 2 a + b + c {2\over a+b+c} a + b + c 2
⟹ A 2 × 2 a + b + c = 2 a + b + c × a + b + c 2 ( b + c − a 2 ) ( a + c − b 2 ) ( a + b − c 2 ) \implies A^2 \times {2\over a+b+c}={2\over a+b+c}\times {{a+b+c\over 2}({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})} ⟹ A 2 × a + b + c 2 = a + b + c 2 × 2 a + b + c ( 2 b + c − a ) ( 2 a + c − b ) ( 2 a + b − c )
⟹ 2 A 2 a + b + c = ( b + c − a 2 ) ( a + c − b 2 ) ( a + b − c 2 ) \implies {2A^2\over a+b+c}={({b+c-a\over 2})({a+c-b\over 2})({a+b-c\over 2})} ⟹ a + b + c 2 A 2 = ( 2 b + c − a ) ( 2 a + c − b ) ( 2 a + b − c )
⟹ 2 A 2 a + b + c = ( b + c − a ) ( a + c − b ) ( a + b − c ) 8 \implies {2A^2\over a+b+c}={{(b+c-a)(a+c-b)(a+b-c)\over 8}} ⟹ a + b + c 2 A 2 = 8 ( b + c − a ) ( a + c − b ) ( a + b − c )
Cross multiply to get
⟹ 16 A 2 = ( a + b + c ) ( b + c − a ) ( a + c − b ) ( a + b − c ) \implies 16A^2=(a+b+c)(b+c-a)(a+c-b)(a+b-c) ⟹ 16 A 2 = ( a + b + c ) ( b + c − a ) ( a + c − b ) ( a + b − c )
make ( a + b + c ) (a+b+c) ( a + b + c ) subject of the formula to get
( a + b + c ) = 16 A 2 ( b + c − a ) ( a + c − b ) ( a + b − c ) (a+b+c)={16A^2\over (b+c-a)(a+c-b)(a+b-c)} ( a + b + c ) = ( b + c − a ) ( a + c − b ) ( a + b − c ) 16 A 2
Divide both sides by 2 to get
( a + b + c ) 2 = 16 A 2 2 ( b + c − a ) ( a + c − b ) ( a + b − c ) {(a+b+c)\over 2}={16A^2\over 2 (b+c-a)(a+c-b)(a+b-c)} 2 ( a + b + c ) = 2 ( b + c − a ) ( a + c − b ) ( a + b − c ) 16 A 2
⟹ ( a + b + c ) 2 = 8 A 2 ( b + c − a ) ( a + c − b ) ( a + b − c ) \implies {(a+b+c)\over 2}={8A^2\over (b+c-a)(a+c-b)(a+b-c)} ⟹ 2 ( a + b + c ) = ( b + c − a ) ( a + c − b ) ( a + b − c ) 8 A 2
Recall that S = a + b + c 2 S={a+b+c\over 2} S = 2 a + b + c
∴ \therefore ∴ S = 8 A 2 ( b + c − a ) ( a + c − b ) ( a + b − c ) S={8A^2\over (b+c-a)(a+c-b)(a+b-c)} S = ( b + c − a ) ( a + c − b ) ( a + b − c ) 8 A 2
Comments