A=S(S−a)(S−b)(S−c)
square both sides of the equation to get:
A2=(S(S−a)(S−b)(S−c))2
A2=S(S−a)(S−b)(S−c)
but S=2a+b+c
⟹A2=2a+b+c(2a+b+c−a)(2a+b+c−b)(2a+b+c−c)
=2a+b+c(2a+b+c−2a)(2a+b+c−2b)(2a+b+c−2c)
=2a+b+c(2b+c−a)(2a+c−b)(2a+b−c)
Multiply both sides of the equation by a+b+c2
⟹A2×a+b+c2=a+b+c2×2a+b+c(2b+c−a)(2a+c−b)(2a+b−c)
⟹a+b+c2A2=(2b+c−a)(2a+c−b)(2a+b−c)
⟹a+b+c2A2=8(b+c−a)(a+c−b)(a+b−c)
Cross multiply to get
⟹16A2=(a+b+c)(b+c−a)(a+c−b)(a+b−c)
make (a+b+c) subject of the formula to get
(a+b+c)=(b+c−a)(a+c−b)(a+b−c)16A2
Divide both sides by 2 to get
2(a+b+c)=2(b+c−a)(a+c−b)(a+b−c)16A2
⟹2(a+b+c)=(b+c−a)(a+c−b)(a+b−c)8A2
Recall that S=2a+b+c
∴ S=(b+c−a)(a+c−b)(a+b−c)8A2
Comments
Leave a comment