Answer to Question #212667 in Algebra for Faith

Question #212667

1.find the roots of the equation: z^4+4=0 and z^4-4=0.

2.additional exercises for practice are given below.find the roots of:

2.1.z^8-16=0.

2.2.z^8+16=0.



1
Expert's answer
2021-07-06T16:10:08-0400

z4+4=0z4=4z4=4(cos(π)+isin(π))z4=4(cos(2πn+π)+isin(2πn+π))z=414(cos(2πn+π4)+isin(2πn+π)4)n=0,1,2,3zo=414(cos(0+π4)+isin(0+π)4)zo=414(cos(π4)+isin(π4))z1=414(cos(3π4)+isin(3π4))z2=414(cos(5π4)+isin(5π4))z3=414(cos(7π4)+isin(7π4))z^4+4=0\\ z^4=-4\\ z^4=4(\cos(\pi)+i\sin(\pi))\\ z^4=4(\cos(2\pi{n}+\pi)+i\sin(2\pi{n}+\pi))\\ z=4^\frac{1}{4}(\cos(\frac{2\pi{n}+\pi}{4})+\\i\sin(\frac{2\pi{n}+\pi)}{4})\\ n=0,1,2,3\\ z_o=4^\frac{1}{4}(\cos(\frac{0+\pi}{4})+\\i\sin(\frac{0+\pi)}{4})\\ z_o=4^\frac{1}{4}(\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4}))\\ z_1=4^\frac{1}{4}(\cos(\frac{3\pi}{4})+i\sin(\frac{3\pi}{4}))\\ z_2=4^\frac{1}{4}(\cos(\frac{5\pi}{4})+i\sin(\frac{5\pi}{4}))\\ z_3=4^\frac{1}{4}(\cos(\frac{7\pi}{4})+i\sin(\frac{7\pi}{4}))\\

To solve z44=0z^4-4=0

z4=4z4=4(cos(0)+isin(0))z4=4(cos(2πn)+isin(2πn)z=414(cos(2πn4)+isin(2πn)4)zo=414(cos(0)+isin(0))zo=414z1=414(cos(π2)+isin(π2))z2=414(cos(π)+isin(π))z3=414(cos(3π2)+isin(3π2))z^4=4\\ z^4 =4(cos(0)+isin(0))\\ z^4=4(\cos(2\pi{n})+i\sin(2\pi{n})\\ z=4^\frac{1}{4}(\cos(\frac{2\pi{n}}{4})+\\i\sin(\frac{2\pi{n})}{4})\\ z_o=4^\frac{1}{4}(\cos(0)+i\sin(0))\\ z_o=4^\frac{1}{4}\\ z_1=4^\frac{1}{4}(\cos(\frac{\pi}{2})+i\sin(\frac{\pi}{2}))\\ z_2=4^\frac{1}{4}(\cos(\pi)+i\sin(\pi))\\ z_3=4^\frac{1}{4}(\cos(\frac{3\pi}{2})+i\sin(\frac{3\pi}{2}))\\

To solve z416=0z^4-16=0

z4=16z4=16(cos(0)+isin(0))z4=16(cos(2πn)+isin(2πn)z=1614(cos(2πn4)+isin(2πn)4)zo=1614(cos(0)+isin(0))zo=1614=2z1=2(cos(π2)+isin(π2))z2=2(cos(π)+isin(π))z3=2(cos(3π2)+isin(3π2))z^4=16\\ z^4 =16(cos(0)+isin(0))\\ z^4=16(\cos(2\pi{n})+i\sin(2\pi{n})\\ z=16^\frac{1}{4}(\cos(\frac{2\pi{n}}{4})+\\i\sin(\frac{2\pi{n})}{4})\\ z_o=16^\frac{1}{4}(\cos(0)+i\sin(0))\\ z_o=16^\frac{1}{4}=2\\ z_1=2(\cos(\frac{\pi}{2})+i\sin(\frac{\pi}{2}))\\ z_2=2(\cos(\pi)+i\sin(\pi))\\ z_3=2(\cos(\frac{3\pi}{2})+i\sin(\frac{3\pi}{2}))\\

To solve z4+16=0z^4+16=0

z4=16z4=16(cos(2πn+π)+isin(2πn+π))z=1614(cos(2πn+π4)+isin(2πn+π)4)n=0,1,2,3zo=1614(cos(0+π4)+isin(0+π)4)zo=2(cos(π4)+isin(π4))=2z1=2(cos(3π4)+isin(3π4))z2=2(cos(5π4)+isin(5π4))z3=2(cos(7π4)+isin(7π4))z^4=-16\\ z^4=16(\cos(2\pi{n}+\pi)+i\sin(2\pi{n}+\pi))\\ z=16^\frac{1}{4}(\cos(\frac{2\pi{n}+\pi}{4})+\\i\sin(\frac{2\pi{n}+\pi)}{4})\\ n=0,1,2,3\\ z_o=16^\frac{1}{4}(\cos(\frac{0+\pi}{4})+\\i\sin(\frac{0+\pi)}{4})\\ z_o=2(\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4}))=-2\\ z_1=2(\cos(\frac{3\pi}{4})+i\sin(\frac{3\pi}{4}))\\ z_2=2(\cos(\frac{5\pi}{4})+i\sin(\frac{5\pi}{4}))\\ z_3=2(\cos(\frac{7\pi}{4})+i\sin(\frac{7\pi}{4}))\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment