z4+4=0z4=−4z4=4(cos(π)+isin(π))z4=4(cos(2πn+π)+isin(2πn+π))z=441(cos(42πn+π)+isin(42πn+π))n=0,1,2,3zo=441(cos(40+π)+isin(40+π))zo=441(cos(4π)+isin(4π))z1=441(cos(43π)+isin(43π))z2=441(cos(45π)+isin(45π))z3=441(cos(47π)+isin(47π))
To solve z4−4=0
z4=4z4=4(cos(0)+isin(0))z4=4(cos(2πn)+isin(2πn)z=441(cos(42πn)+isin(42πn))zo=441(cos(0)+isin(0))zo=441z1=441(cos(2π)+isin(2π))z2=441(cos(π)+isin(π))z3=441(cos(23π)+isin(23π))
To solve z4−16=0
z4=16z4=16(cos(0)+isin(0))z4=16(cos(2πn)+isin(2πn)z=1641(cos(42πn)+isin(42πn))zo=1641(cos(0)+isin(0))zo=1641=2z1=2(cos(2π)+isin(2π))z2=2(cos(π)+isin(π))z3=2(cos(23π)+isin(23π))
To solve z4+16=0
z4=−16z4=16(cos(2πn+π)+isin(2πn+π))z=1641(cos(42πn+π)+isin(42πn+π))n=0,1,2,3zo=1641(cos(40+π)+isin(40+π))zo=2(cos(4π)+isin(4π))=−2z1=2(cos(43π)+isin(43π))z2=2(cos(45π)+isin(45π))z3=2(cos(47π)+isin(47π))
Comments
Leave a comment