(x+y)³=(x-y)²
"Given,(x+y)\u00b3=(x-y)\u00b2.\\newline\n\\text{Taking all terms to left side.}\\newline\n(x+y)\u00b3-(x-y)\u00b2=0\\newline\n\\text{By using algebraic identities,}\\newline (x+y)\u00b3=x^3+3x^2y+3xy^2+y^3 and (x-y)^2=x^2-2x^2y+y^2\\newline\nTherefore,\\newline\n(x+y)\u00b3-(x-y)\u00b2=0\\newline\n(x^3+3x^2y+3xy^2+y^3)-(x^2-2xy+y^2)=0\\newline\nx^3-x^2+3x^2y+3xy^2+2xy+y^3-y^2=0\\newline\n(x^3+y^3)-(x^2+y^2)+3x^2y+3xy^2+2xy=0\\newline\n(x+y)(x^2-xy+y^2)-(x^2+y^2)+3xy(x+y)+2xy=0\\newline\n(x+y)(x^2-xy+y^2)-((x+y)^2-2xy)+3xy(x+y)+2xy=0\\newline\n(x+y)(x^2-xy+y^2)-(x+y)^2+3xy(x+y)+4xy=0\\newline\n(x+y)(x^2-xy+y^2-x-y+3xy)+4xy=0\\newline\n(x+y)(x^2+2xy+y^2-x-y)+4xy=0\\newline\n(x+y)((x+y)^2-(x+y))+4xy=0\\newline\n(x+y)^2(x+y-1)+4xy=0\\newline"
Comments
Leave a comment