Given,(x+y)³=(x−y)².Taking all terms to left side.(x+y)³−(x−y)²=0By using algebraic identities,(x+y)³=x3+3x2y+3xy2+y3and(x−y)2=x2−2x2y+y2Therefore,(x+y)³−(x−y)²=0(x3+3x2y+3xy2+y3)−(x2−2xy+y2)=0x3−x2+3x2y+3xy2+2xy+y3−y2=0(x3+y3)−(x2+y2)+3x2y+3xy2+2xy=0(x+y)(x2−xy+y2)−(x2+y2)+3xy(x+y)+2xy=0(x+y)(x2−xy+y2)−((x+y)2−2xy)+3xy(x+y)+2xy=0(x+y)(x2−xy+y2)−(x+y)2+3xy(x+y)+4xy=0(x+y)(x2−xy+y2−x−y+3xy)+4xy=0(x+y)(x2+2xy+y2−x−y)+4xy=0(x+y)((x+y)2−(x+y))+4xy=0(x+y)2(x+y−1)+4xy=0
Comments
Leave a comment