Provide the values of β that are the solutions to the equation:
2cos(3β + π/3) = -√2
Provide the values of β that are the solutions to the equation:
"2\\cos\\left(3\\beta+\\frac{\\pi}{3}\\right)=-\\sqrt2".
"\\textbf{Solution:}"
"2\\cos\\left(3\\beta+\\frac{\\pi}{3}\\right)=-\\sqrt2".
"\\left[ \n\\begin{gathered} \n3\\beta+\\frac{\\pi}{3}=\\cos^{-1}\\left(-\\frac{\\sqrt2}{2}\\right)+2\\pi k, \\, k\\in\\mathbb {Z}, \n\\\\\n3\\beta+\\frac{\\pi}{3}=-\\cos^{-1}\\left(-\\frac{\\sqrt2}{2}\\right)+2\\pi k, \\, k\\in\\mathbb {Z}. \n\\end{gathered}\n\\right."
"\\left[ \n\\begin{gathered} \n3\\beta+\\frac{\\pi}{3}=\\frac{3\\pi}{4}+2\\pi k, \\, k\\in\\mathbb {Z},\n\\\\\n3\\beta+\\frac{\\pi}{3}=-\\frac{3\\pi}{4}+2\\pi k, \\, k\\in\\mathbb {Z}. \n\\end{gathered}\n\\right."
"\\left[ \n\\begin{gathered} \n3\\beta=\\frac{5\\pi}{12}+2\\pi k, \\, k\\in\\mathbb {Z}, \n\\\\\n3\\beta=-\\frac{13\\pi}{12}+2\\pi k, \\, k\\in\\mathbb {Z}. \n\\end{gathered}\n\\right."
"\\left[ \n\\begin{gathered} \n\\beta=\\frac{5\\pi}{36}+\\frac{2\\pi k}{3}, \\, k\\in\\mathbb {Z}, \n\\\\\n\\beta=-\\frac{13\\pi}{36}+\\frac{2\\pi k}{3}, \\, k\\in\\mathbb {Z}. \n\\end{gathered}\n\\right."
"\\textbf{Answer:}"
"\\boxed{\\beta\\in \\{\\frac{5\\pi}{36}+\\frac{2\\pi k}{3} \\}\\cup \\{-\\frac{13\\pi}{36}+\\frac{2\\pi k}{3}\\}, \\, k\\in\\mathbb {Z}}"
Comments
Leave a comment