Provide the values of β that are the solutions to the equation:
2cos(3β+3π)=−2.
Solution: 
2cos(3β+3π)=−2. 
⎣⎡3β+3π=cos−1(−22)+2πk,k∈Z,3β+3π=−cos−1(−22)+2πk,k∈Z. 
⎣⎡3β+3π=43π+2πk,k∈Z,3β+3π=−43π+2πk,k∈Z. 
⎣⎡3β=125π+2πk,k∈Z,3β=−1213π+2πk,k∈Z. 
⎣⎡β=365π+32πk,k∈Z,β=−3613π+32πk,k∈Z. 
Answer: 
β∈{365π+32πk}∪{−3613π+32πk},k∈Z 
                             
Comments