Question #179499

a) Find all the units of Z[ − 7]. b) Check whether or not < 8x + 6x − 9x + 24 > [x] 3 2 Q is a field. c) Construct a field with 125 element


1
Expert's answer
2021-05-07T09:57:56-0400


Solution:-

(a)


If aRa\in R be a unit and a, b \in R , such that


Z(-7) = {a+(-7)b} , a,b \in Z


let (a+(-7)) \in Z(-7) be a unit \exist (c+(-7)d) \in (-7)


(a+(-7)b)(c+(-7)d)=1.............(1)


    \implies

(a-7b)(c-7d)=1


    \implies

a=1 and c can be 1

as b,d \in Z so cannot be fractional





(b)



8x + 6x − 9x + 24 > [x] 3 2 Q is a field


[x] 3 2 Q is a field

on solving we get

x3-2


5x-24 < x3-2

    \implies

x3-5x+22>0


as we can see


X=3.3,1.6+1.9i,1.61.9i\boxed{X= -3.3 , 1.6+1.9i , 1.6-1.9i}



(c)

Solution: We know thatTo find an irreducible polynomial of degree 3 in Z5[x].x3+x+1 is one such polynomial ,it clearly has no linear factors (Since 0,1,2,3,4,) are not roots.So,F=Z5[x]x3+x+1 is a field with 53 elements.Solution: ~We~ know ~ that \\To ~find ~ an ~ irreducible ~ polynomial ~ of ~ degree ~3 ~ in ~Z_5[x]. \\x^3 +x+1~ is ~ one ~ such ~polynomial~, it~ clearly ~has ~ no ~ linear~ factors~(Since ~0,1,2,3,4,) ~are ~\\not ~roots. \\So, F=\frac{Z_5[x]}{x^3 +x+1} ~is ~ a~ field ~ with ~ 5^3 ~elements.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS