Answer to Question #174551 in Algebra for Richard

Question #174551

1.log11(x2+3x) =log11(3x+16)

2.In(4-3x) -In(7x) =In(11)

3.log(x) +log(x+12)=log(x-10)

4.In(x) =In(15-x) -In(x+1)

5.log8(4x+1) =-1

6.log6(3x) -log6(x+5) =1


1
Expert's answer
2021-03-24T14:03:37-0400

1.

x2+3x=3x+16,3x+16>0x^2+3x=3x+16, 3x+16>0

x2=16,x>163x^2=16, x>-\dfrac{16}{3}

x1=4,x2=4x_1=-4, x_2=4

2.

ln(43x)=ln(77x),0<x<43\ln(4-3x)=\ln(77x), 0<x<\dfrac{4}{3}

43x=77x4-3x=77x

x=0.05x=0.05


3.


log(x(x+12))=log(x10),x>10\log(x(x+12))=\log(x-10), x>10

x2+12x=x10x^2+12x=x-10

x2+11x+10=0x^2+11x+10=0

(x+1)(x+10)=0(x+1)(x+10)=0

Since x<0,x<0, then there are no solutions.

There are no solutions.


4.


ln(x)+ln(x+1)=ln(15x),0<x<15\ln(x)+\ln(x+1)=\ln(15-x), 0<x<15

ln(x(x+1))=ln(15x)\ln(x(x+1))=\ln(15-x)

x2+x=15xx^2+x=15-x

x2+2x15=0x^2+2x-15=0




(x+5)(x3)=0(x+5)(x-3)=0

Since 0<x<15,0<x<15, we take x=3.x=3.

Solution is x=3.x=3.


5.


4x+1=814x+1=8^{-1}

4x=784x=-\dfrac{7}{8}

x=732x=-\dfrac{7}{32}

6.


log6(3x)=log6(6(x+5)),x>0\log_6(3x)=\log_6(6(x+5)), x>0

3x=6(x+5)3x=6(x+5)

x=2x+10x=2x+10

Since x=10<0,x=-10<0, then there are no solutions.

There are no solutions.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment