52(x-1)+5x+1=0.04
25
"5^{2(x-1)}+5^{x+1}=\\frac{4}{100}=\\frac{1}{5^2}"
"5^{2x}*5^{-2}+5^x*5=5^{-2}"
multiplying both side by "5^{2}" , we get
"5^{2x}+5^x*5^{2+1}=1" ("a^p*a^q=a^{p+q}" )
"5^x*5^x+5^x*5^3=1" ; on dividing the equation by 5x in both side, we get
"5^x+5^3=\\frac{1}{5^x}" or "5^x-\\frac{1}{5^x}=-125"
let "5^x=y" , then the above equation can be written as,
"y-\\frac{1}{y}=-125" or "y^2+125y-1=0"
"y=\\frac{-125\\pm\\sqrt{125^2-4*1*(-1)}}{2*1}" "=\\frac{-125\\pm(125.015999)}{2}"
y= -125.008 or y= 0.0079995
we know that "y=5^x" , for any value of x, gives the value of y always positive. so
y = 0.0079995 is only the valid value.
so, "y=0.0079995=5^x"
taking log (base 10) both side of equation, we get
"log(0.0079995)=log(5^x)"
"-2.09693716 = x * log(5)" "(log(a^p)=p*log(a))"
"x=\\frac{-2.09693716}{0.698970004}"
"x=-3.00003884"
Comments
Leave a comment