5 2 ( x − 1 ) + 5 x + 1 = 4 100 = 1 5 2 5^{2(x-1)}+5^{x+1}=\frac{4}{100}=\frac{1}{5^2} 5 2 ( x − 1 ) + 5 x + 1 = 100 4 = 5 2 1
5 2 x ∗ 5 − 2 + 5 x ∗ 5 = 5 − 2 5^{2x}*5^{-2}+5^x*5=5^{-2} 5 2 x ∗ 5 − 2 + 5 x ∗ 5 = 5 − 2
multiplying both side by 5 2 5^{2} 5 2 , we get
5 2 x + 5 x ∗ 5 2 + 1 = 1 5^{2x}+5^x*5^{2+1}=1 5 2 x + 5 x ∗ 5 2 + 1 = 1 (a p ∗ a q = a p + q a^p*a^q=a^{p+q} a p ∗ a q = a p + q )
5 x ∗ 5 x + 5 x ∗ 5 3 = 1 5^x*5^x+5^x*5^3=1 5 x ∗ 5 x + 5 x ∗ 5 3 = 1 ; on dividing the equation by 5 x in both side, we get
5 x + 5 3 = 1 5 x 5^x+5^3=\frac{1}{5^x} 5 x + 5 3 = 5 x 1 or 5 x − 1 5 x = − 125 5^x-\frac{1}{5^x}=-125 5 x − 5 x 1 = − 125
let 5 x = y 5^x=y 5 x = y , then the above equation can be written as,
y − 1 y = − 125 y-\frac{1}{y}=-125 y − y 1 = − 125 or y 2 + 125 y − 1 = 0 y^2+125y-1=0 y 2 + 125 y − 1 = 0
y = − 125 ± 12 5 2 − 4 ∗ 1 ∗ ( − 1 ) 2 ∗ 1 y=\frac{-125\pm\sqrt{125^2-4*1*(-1)}}{2*1} y = 2 ∗ 1 − 125 ± 12 5 2 − 4 ∗ 1 ∗ ( − 1 ) = − 125 ± ( 125.015999 ) 2 =\frac{-125\pm(125.015999)}{2} = 2 − 125 ± ( 125.015999 )
y= -125.008 or y= 0.0079995
we know that y = 5 x y=5^x y = 5 x , for any value of x, gives the value of y always positive. so
y = 0.0079995 is only the valid value.
so, y = 0.0079995 = 5 x y=0.0079995=5^x y = 0.0079995 = 5 x
taking log (base 10) both side of equation, we get
l o g ( 0.0079995 ) = l o g ( 5 x ) log(0.0079995)=log(5^x) l o g ( 0.0079995 ) = l o g ( 5 x )
− 2.09693716 = x ∗ l o g ( 5 ) -2.09693716 = x * log(5) − 2.09693716 = x ∗ l o g ( 5 ) ( l o g ( a p ) = p ∗ l o g ( a ) ) (log(a^p)=p*log(a)) ( l o g ( a p ) = p ∗ l o g ( a ))
x = − 2.09693716 0.698970004 x=\frac{-2.09693716}{0.698970004} x = 0.698970004 − 2.09693716
x = − 3.00003884 x=-3.00003884 x = − 3.00003884
Comments