Factor the following equation a) f(x) = (x ^ 2 - 36)/(x ^ 2 + 3x + 2) f(x) = 2x ^ 3 + 3x ^ 2 - 3x - 2
a) Consider the function "f(x)=\\frac{x^2-36}{x^2+3x+2}"
Factor the numerator "x^2-36" using "a^2-b^2=(a+b)(a-b)" as,
"x^2-36=(x+6)(x-6)"
Factorize the denominator as,
"x^2+3x+2=x^2+2x+x+2=(x+2)(x+1)"
b) Consider the function "f(x)=2x^3+3x^2-3x-2"
For "x=1,f(1)=2+3-3-2=0" , so "x-1" is a factor of the function.
Expand the function to find the factor "x-1" as,
"f(x)=2x^3-2x^2+5x^2-5x+2x-2"
"=2x^2(x-1)+5x(x-1)+2(x-1)"
"=(x-1)(2x^2+5x+2)"
"=(x-1)(2x^2+4x+x+2)"
"=(x-1)(2x(x+2)+1(x+2))"
"=(x-1)(2x+1)(x+2)"
Comments
Leave a comment