Answer to Question #161578 in Algebra for Samir khan

Question #161578

Factor the following equation a) f(x) = (x ^ 2 - 36)/(x ^ 2 + 3x + 2) f(x) = 2x ^ 3 + 3x ^ 2 - 3x - 2


1
Expert's answer
2021-02-23T08:22:21-0500

a) Consider the function f(x)=x236x2+3x+2f(x)=\frac{x^2-36}{x^2+3x+2}


Factor the numerator x236x^2-36 using a2b2=(a+b)(ab)a^2-b^2=(a+b)(a-b) as,


x236=(x+6)(x6)x^2-36=(x+6)(x-6)


Factorize the denominator as,


x2+3x+2=x2+2x+x+2=(x+2)(x+1)x^2+3x+2=x^2+2x+x+2=(x+2)(x+1)


Therefore, the function in factored form is f(x)=(x+6)(x6)(x+2)(x+1)f(x)=\frac{(x+6)(x-6)}{(x+2)(x+1)}


b) Consider the function f(x)=2x3+3x23x2f(x)=2x^3+3x^2-3x-2


For x=1,f(1)=2+332=0x=1,f(1)=2+3-3-2=0 , so x1x-1 is a factor of the function.


Expand the function to find the factor x1x-1 as,


f(x)=2x32x2+5x25x+2x2f(x)=2x^3-2x^2+5x^2-5x+2x-2


=2x2(x1)+5x(x1)+2(x1)=2x^2(x-1)+5x(x-1)+2(x-1)


=(x1)(2x2+5x+2)=(x-1)(2x^2+5x+2)


=(x1)(2x2+4x+x+2)=(x-1)(2x^2+4x+x+2)


=(x1)(2x(x+2)+1(x+2))=(x-1)(2x(x+2)+1(x+2))


=(x1)(2x+1)(x+2)=(x-1)(2x+1)(x+2)


Therefore, the factored form of the function is f(x)=(x1)(2x+1)(x+2)f(x)=(x-1)(2x+1)(x+2) .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment