a) Consider the function f(x)=x2+3x+2x2−36
Factor the numerator x2−36 using a2−b2=(a+b)(a−b) as,
x2−36=(x+6)(x−6)
Factorize the denominator as,
x2+3x+2=x2+2x+x+2=(x+2)(x+1)
b) Consider the function f(x)=2x3+3x2−3x−2
For x=1,f(1)=2+3−3−2=0 , so x−1 is a factor of the function.
Expand the function to find the factor x−1 as,
f(x)=2x3−2x2+5x2−5x+2x−2
=2x2(x−1)+5x(x−1)+2(x−1)
=(x−1)(2x2+5x+2)
=(x−1)(2x2+4x+x+2)
=(x−1)(2x(x+2)+1(x+2))
=(x−1)(2x+1)(x+2)
Comments
Leave a comment