x+1/x=5, then find the value of x^16+1/x^16 ?
We have given with
"x+1\/x=5"
So, "(x+1\/x)^2=(5)^2"
Expanding the bracket by using formula
"(a+b)^2=a^2+2ab+b^2"
We get ,
"x^2+2(x)(1\/x)+(1\/x^2)=25"
Simplifying we have,
"x^2+1\/x^2=23"
Taking square on both sides we get
"(x^2+1\/x^2)^2=(23 )^2"
"=x^4+2(x^4)(1\/x^4)+(1\/x^4)=529" ,
"x^4+1\/x^4=529-2"
"=x^4+1\/x^4=527"
Again Taking square on both sides we get
"(x^4+1\/x^4)^2=(527)^2"
"=x^8+2(x^8)(1\/x^8)+1\/x^8=277729" ,
"x^8+1\/x^8=277729-2"
"=x^8+1\/x^8=277727"
Again ,Taking square on both sides,we have
"(277727)^2-2"
Comments
Leave a comment