Answer the following problems.
2.) Determine the sum pf the real zeros of P(x) = 3x4 + 14x3 + 10x2 - 14x + 3.
3.) Find μ so that x - 3 is a factor of μx3 - 13x3 - μx - 3.
2)
"x=-3"
"3x^4+14x^3+10x^2-14x+3="
"=3x^3(x+3)+5x^2(x+3)-5x(x+3)+x+3="
"=3(x+3)(x^3+\\dfrac{5}{3}x^2-\\dfrac{5}{3}x+\\dfrac{1}{3})"
"=3(x+3)(x^3-\\dfrac{1}{3}x^2+2x^2-\\dfrac{2}{3}x-x+\\dfrac{1}{3})"
"=3(x+3)(x-\\dfrac{1}{3})(x^2+2x-1)"
"=3(x+3)(x-\\dfrac{1}{3})(x+1-\\sqrt{2})(x+1+\\sqrt{2})"
"x_1+x_2+x_3+x_4=-3+\\dfrac{1}{3}-2=-\\dfrac{14}{3}"
Vieta's formulas
"=\\dfrac{a_2}{a_4}=\\dfrac{10}{3}"
3)
"P(3)=\\mu (3)^3-13(3)^2-\\mu (3)-3=0"
"24\\mu=120"
"\\mu=5"
Comments
Leave a comment