Answer to Question #158701 in Algebra for moon

Question #158701

Answer the following problems.


2.) Determine the sum pf the real zeros of P(x) = 3x4 + 14x3 + 10x2 - 14x + 3.

3.) Find μ so that x - 3 is a factor of  μx3 - 13x3 - μx - 3.








1
Expert's answer
2021-02-01T11:56:14-0500

2)

x=3x=-3


3(3)4+14(3)3+10(3)214(3)+3=03(-3)^4+14(-3)^3+10(-3)^2-14(-3)+3=0

3x4+14x3+10x214x+3=3x^4+14x^3+10x^2-14x+3=

=3x3(x+3)+5x2(x+3)5x(x+3)+x+3==3x^3(x+3)+5x^2(x+3)-5x(x+3)+x+3=

=3(x+3)(x3+53x253x+13)=3(x+3)(x^3+\dfrac{5}{3}x^2-\dfrac{5}{3}x+\dfrac{1}{3})

=3(x+3)(x313x2+2x223xx+13)=3(x+3)(x^3-\dfrac{1}{3}x^2+2x^2-\dfrac{2}{3}x-x+\dfrac{1}{3})

=3(x+3)(x13)(x2+2x1)=3(x+3)(x-\dfrac{1}{3})(x^2+2x-1)

=3(x+3)(x13)(x+12)(x+1+2)=3(x+3)(x-\dfrac{1}{3})(x+1-\sqrt{2})(x+1+\sqrt{2})

x1+x2+x3+x4=3+132=143x_1+x_2+x_3+x_4=-3+\dfrac{1}{3}-2=-\dfrac{14}{3}

Vieta's formulas


x1+x2+x3+x4=a3a4=143x_1+x_2+x_3+x_4=-\dfrac{a_3}{a_4}=-\dfrac{14}{3}


x1x2+x1x3+x1x4+x2x3+x2x4+x3x4x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4


=a2a4=103=\dfrac{a_2}{a_4}=\dfrac{10}{3}


x1x2x3+x1x2x4+x1x3x4+x2x3x4x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4




=a1a4=143=-\dfrac{a_1}{a_4}=\dfrac{14}{3}


x1x2x3x4=a0a4=1x_1x_2x_3x_4=\dfrac{a_0}{a_4}=1

3)


P(x)=μx313x2μx3P(x)=\mu x^3-13x^2-\mu x-3

P(3)=μ(3)313(3)2μ(3)3=0P(3)=\mu (3)^3-13(3)^2-\mu (3)-3=0

24μ=12024\mu=120

μ=5\mu=5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment