Question #158695

Use the Remainder Theorem to determine the remainder when P(x) is divided by D(x). Determine if D(x) is a factor of P(x).


  1. P(x) = x3 - x2 + x - 1; D(x) = x - 1
  2. P(x) = 20x3 - 17x2 + 6x - 26; D(x) = x + 1
  3. P(x) = 2x3 - 5x + x2 + 2; D(x) = x + 2
  4. P(x) = 12x3 - 8x2 + 4x - 3; D(x) = 2x - 1










1
Expert's answer
2021-01-28T05:08:55-0500

By The Remainder Theorem:

When we divide a polynomial P(x)P(x)  by (xc)(x-c) the remainder is P(c)P(c)

1. P(x)=x3x2+x1;D(x)=x1P(x)=x^3-x^2+x-1;D(x)=x-1


P(1)=(1)3(1)2+11=0P(1)=(1)^3-(1)^2+1-1=0

D(x)D(x) is a factor of P(x).P(x).


2. P(x)=20x317x2+6x26;D(x)=x+1P(x)=20x^3-17x^2+6x-26;D(x)=x+1


P(1)=20(1)317(1)2+6(1)26=69P(-1)=20(-1)^3-17(-1)^2+6(-1)-26=-69


Remainder is 69.-69.


3. P(x)=2x3+x25x+2;D(x)=x+2P(x)=2x^3+x^2-5x+2;D(x)=x+2


P(2)=2(2)3+(2)25(2)+2=0P(-2)=2(-2)^3+(-2)^2-5(-2)+2=0

D(x)D(x) is a factor of P(x).P(x).


4. P(x)=12x38x2+4x3;D(x)=2x1P(x)=12x^3-8x^2+4x-3;D(x)=2x-1


P1(x)=6x34x2+2x1.5P_1(x)=6x^3-4x^2+2x-1.5 divided by D1=(x0.5)D_1=(x-0.5)



P1(0.5)=6(0.5)34(0.5)2+2(0.5)1.5=0.75P_1(0.5)=6(0.5)^3-4(0.5)^2+2(0.5)-1.5=-0.75


Remainder is 2(0.75)=1.5.2(-0.75)=-1.5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS