x 2 + 1 = 0 . . ( 1 ) y = x 2 + 1 . . ( 2 ) \pmb{x^2+1=0}\;\;\; ..(1)\\
\pmb{y=x^2+1}\;\;\;..(2) x 2 + 1 = 0 x 2 + 1 = 0 .. ( 1 ) y = x 2 + 1 y = x 2 + 1 .. ( 2 )
Now from equation ( 1 ) , (1), ( 1 ) ,
x 2 + 1 = 0 ⇒ ( x ) 2 − ( − 1 ) = 0 ⇒ ( x ) 2 − ( i ) 2 = 0 [ w h e r e i = − 1 ] ⇒ ( x − i ) ( x + i ) = 0 ⇒ x = i o r , x = − i x^2+1=0\\
\Rightarrow (x)^2-(-1)=0\\
\Rightarrow (x)^2-(i)^2=0\\
\pmb[where \;\;i=\sqrt{-1}\;\pmb]\\
\Rightarrow (x-i)(x+i)=0\\
\Rightarrow x=i\;\;\;or, \;\;\;x=-i x 2 + 1 = 0 ⇒ ( x ) 2 − ( − 1 ) = 0 ⇒ ( x ) 2 − ( i ) 2 = 0 [ [ w h ere i = − 1 ] ] ⇒ ( x − i ) ( x + i ) = 0 ⇒ x = i or , x = − i
Now putting these x x x -values in equation ( 2 ) (2) ( 2 ) ,
y = 0 y=0 y = 0 if x = i x=i x = i
and, y = 0 y=0 y = 0 if x = − i x=-i x = − i
∴ \therefore ∴ From above discussion, we can decide that,
Solution set of ( x , y ) = { ( i , 0 ) , ( − i , 0 ) } (x,y)=\{(i,0),(-i,0)\} ( x , y ) = {( i , 0 ) , ( − i , 0 )} [Ans. ]
i.e. ( x , y ) = ( i , 0 ) o r , ( − i , 0 ) (x,y)= (i,0) \;\;\;or, \;\;\;(-i,0) ( x , y ) = ( i , 0 ) or , ( − i , 0 )
Comments
Thank you for the clear explanation