Question #152744
Solving quadric equations by factorization

Find the real solutions of the following equations
1.(x^2+2x-14)^5=1
2.(x^2+7x-11)^8=1
1
Expert's answer
2020-12-24T18:12:32-0500

1.


(x2+2x14)5=1,xR(x^2+2x-14)^5=1, x\in\R

Let x2+2x14=u,uRx^2+2x-14=u, u\in\R


u51=u5u4+u4u3+u3u2+u2u+u1u^5-1=u^5-u^4+u^4-u^3+u^3-u^2+u^2-u+u-1

=(u1)(u4+u3+u2+u+1)=(u-1)(u^4+u^3+u^2+u+1)


=(u1)(u4+u3+14u2+34u2+u+1)=(u-1)(u^4+u^3+\dfrac{1}{4}u^2+\dfrac{3}{4}u^2+u+1)

=(u1)(u2(u+12)2+12u2+14u2+u+1)=(u-1)(u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+\dfrac{1}{4}u^2+u+1)

=(u1)(u2(u+12)2+12u2+(12u+1)2)=(u-1)(u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2)

u2(u+12)2+12u2+(12u+1)2>0,u0,u12u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2>0, u\not=0, u\not=-\dfrac{1}{2}

u2(u+12)2+12u2+(12u+1)2=1>0,u=0u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2=1>0, u=0

u2(u+12)2+12u2+(12u+1)2=18>0,u=12u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2=\dfrac{1}{8}>0, u=-\dfrac{1}{2}

Then


u2(u+12)2+12u2+(12u+1)2>0,uRu^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2>0, u\in\R

Hence


u1=0u-1=0


x2+2x141=0x^2+2x-14-1=0

x2+2x15=0x^2+2x-15=0

(x+5)(x3)=0(x+5)(x-3)=0

x+5=0 or x3=0x+5=0\ or\ x-3=0

x1=5,x2=3x_1=-5, x_2=3

{5,3}\{-5, 3\}


2.


(x2+7x11)8=1,xR(x^2+7x-11)^8=1, x\in\R

((x2+7x11)41)((x2+7x11)4+1)=0((x^2+7x-11)^4-1)((x^2+7x-11)^4+1)=0

Since xR,x\in \R, then (x2+7x11)4+1>0(x^2+7x-11)^4+1>0



(x2+7x11)41=0(x^2+7x-11)^4-1=0

((x2+7x11)21)((x2+7x11)2+1)=0((x^2+7x-11)^2-1)((x^2+7x-11)^2+1)=0

Since xR,x\in \R, then (x2+7x11)2+1>0(x^2+7x-11)^2+1>0



(x2+7x11)21=0(x^2+7x-11)^2-1=0

((x2+7x11)1)((x2+7x11)+1)=0((x^2+7x-11)-1)((x^2+7x-11)+1)=0


(x2+7x12)(x2+7x10)=0(x^2+7x-12)(x^2+7x-10)=0

x2+7x12=0 or x2+7x10=0x^2+7x-12=0\ or\ x^2+7x-10=0

x2+7x12=0x^2+7x-12=0

x2+2(72)x+(72)2974=0x^2+2(\dfrac{7}{2})x+(\dfrac{7}{2})^2-\dfrac{97}{4}=0

(x+72)2974=0(x+\dfrac{7}{2})^2-\dfrac{97}{4}=0

x1=72972,x2=72+972x_1=-\dfrac{7}{2}-\dfrac{\sqrt{97}}{2}, x_2=-\dfrac{7}{2}+\dfrac{\sqrt{97}}{2}

x2+7x10=0x^2+7x-10=0

x2+2(72)x+(72)2894=0x^2+2(\dfrac{7}{2})x+(\dfrac{7}{2})^2-\dfrac{89}{4}=0

(x+72)2894=0(x+\dfrac{7}{2})^2-\dfrac{89}{4}=0

x3=72892,x4=72+892x_3=-\dfrac{7}{2}-\dfrac{\sqrt{89}}{2}, x_4=-\dfrac{7}{2}+\dfrac{\sqrt{89}}{2}

{7+972,7+892,7+892,7+972}\bigg\{-\dfrac{7+\sqrt{97}}{2},-\dfrac{7+\sqrt{89}}{2},\dfrac{-7+\sqrt{89}}{2},\dfrac{-7+\sqrt{97}}{2}\bigg\}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS