1.
(x2+2x−14)5=1,x∈R Let x2+2x−14=u,u∈R
u5−1=u5−u4+u4−u3+u3−u2+u2−u+u−1
=(u−1)(u4+u3+u2+u+1)
=(u−1)(u4+u3+41u2+43u2+u+1)
=(u−1)(u2(u+21)2+21u2+41u2+u+1)
=(u−1)(u2(u+21)2+21u2+(21u+1)2)
u2(u+21)2+21u2+(21u+1)2>0,u=0,u=−21
u2(u+21)2+21u2+(21u+1)2=1>0,u=0
u2(u+21)2+21u2+(21u+1)2=81>0,u=−21 Then
u2(u+21)2+21u2+(21u+1)2>0,u∈R Hence
u−1=0
x2+2x−14−1=0
x2+2x−15=0
(x+5)(x−3)=0
x+5=0 or x−3=0
x1=−5,x2=3 {−5,3}
2.
(x2+7x−11)8=1,x∈R
((x2+7x−11)4−1)((x2+7x−11)4+1)=0
Since x∈R, then (x2+7x−11)4+1>0
(x2+7x−11)4−1=0
((x2+7x−11)2−1)((x2+7x−11)2+1)=0
Since x∈R, then (x2+7x−11)2+1>0
(x2+7x−11)2−1=0
((x2+7x−11)−1)((x2+7x−11)+1)=0
(x2+7x−12)(x2+7x−10)=0
x2+7x−12=0 or x2+7x−10=0
x2+7x−12=0
x2+2(27)x+(27)2−497=0
(x+27)2−497=0
x1=−27−297,x2=−27+297
x2+7x−10=0
x2+2(27)x+(27)2−489=0
(x+27)2−489=0
x3=−27−289,x4=−27+289
{−27+97,−27+89,2−7+89,2−7+97}
Comments