1.
( x 2 + 2 x − 14 ) 5 = 1 , x ∈ R (x^2+2x-14)^5=1, x\in\R ( x 2 + 2 x − 14 ) 5 = 1 , x ∈ R Let x 2 + 2 x − 14 = u , u ∈ R x^2+2x-14=u, u\in\R x 2 + 2 x − 14 = u , u ∈ R
u 5 − 1 = u 5 − u 4 + u 4 − u 3 + u 3 − u 2 + u 2 − u + u − 1 u^5-1=u^5-u^4+u^4-u^3+u^3-u^2+u^2-u+u-1 u 5 − 1 = u 5 − u 4 + u 4 − u 3 + u 3 − u 2 + u 2 − u + u − 1
= ( u − 1 ) ( u 4 + u 3 + u 2 + u + 1 ) =(u-1)(u^4+u^3+u^2+u+1) = ( u − 1 ) ( u 4 + u 3 + u 2 + u + 1 )
= ( u − 1 ) ( u 4 + u 3 + 1 4 u 2 + 3 4 u 2 + u + 1 ) =(u-1)(u^4+u^3+\dfrac{1}{4}u^2+\dfrac{3}{4}u^2+u+1) = ( u − 1 ) ( u 4 + u 3 + 4 1 u 2 + 4 3 u 2 + u + 1 )
= ( u − 1 ) ( u 2 ( u + 1 2 ) 2 + 1 2 u 2 + 1 4 u 2 + u + 1 ) =(u-1)(u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+\dfrac{1}{4}u^2+u+1) = ( u − 1 ) ( u 2 ( u + 2 1 ) 2 + 2 1 u 2 + 4 1 u 2 + u + 1 )
= ( u − 1 ) ( u 2 ( u + 1 2 ) 2 + 1 2 u 2 + ( 1 2 u + 1 ) 2 ) =(u-1)(u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2) = ( u − 1 ) ( u 2 ( u + 2 1 ) 2 + 2 1 u 2 + ( 2 1 u + 1 ) 2 )
u 2 ( u + 1 2 ) 2 + 1 2 u 2 + ( 1 2 u + 1 ) 2 > 0 , u ≠ 0 , u ≠ − 1 2 u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2>0, u\not=0, u\not=-\dfrac{1}{2} u 2 ( u + 2 1 ) 2 + 2 1 u 2 + ( 2 1 u + 1 ) 2 > 0 , u = 0 , u = − 2 1
u 2 ( u + 1 2 ) 2 + 1 2 u 2 + ( 1 2 u + 1 ) 2 = 1 > 0 , u = 0 u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2=1>0, u=0 u 2 ( u + 2 1 ) 2 + 2 1 u 2 + ( 2 1 u + 1 ) 2 = 1 > 0 , u = 0
u 2 ( u + 1 2 ) 2 + 1 2 u 2 + ( 1 2 u + 1 ) 2 = 1 8 > 0 , u = − 1 2 u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2=\dfrac{1}{8}>0, u=-\dfrac{1}{2} u 2 ( u + 2 1 ) 2 + 2 1 u 2 + ( 2 1 u + 1 ) 2 = 8 1 > 0 , u = − 2 1 Then
u 2 ( u + 1 2 ) 2 + 1 2 u 2 + ( 1 2 u + 1 ) 2 > 0 , u ∈ R u^2(u+\dfrac{1}{2})^2+\dfrac{1}{2}u^2+(\dfrac{1}{2}u+1)^2>0, u\in\R u 2 ( u + 2 1 ) 2 + 2 1 u 2 + ( 2 1 u + 1 ) 2 > 0 , u ∈ R Hence
u − 1 = 0 u-1=0 u − 1 = 0
x 2 + 2 x − 14 − 1 = 0 x^2+2x-14-1=0 x 2 + 2 x − 14 − 1 = 0
x 2 + 2 x − 15 = 0 x^2+2x-15=0 x 2 + 2 x − 15 = 0
( x + 5 ) ( x − 3 ) = 0 (x+5)(x-3)=0 ( x + 5 ) ( x − 3 ) = 0
x + 5 = 0 o r x − 3 = 0 x+5=0\ or\ x-3=0 x + 5 = 0 or x − 3 = 0
x 1 = − 5 , x 2 = 3 x_1=-5, x_2=3 x 1 = − 5 , x 2 = 3 { − 5 , 3 } \{-5, 3\} { − 5 , 3 }
2.
( x 2 + 7 x − 11 ) 8 = 1 , x ∈ R (x^2+7x-11)^8=1, x\in\R ( x 2 + 7 x − 11 ) 8 = 1 , x ∈ R
( ( x 2 + 7 x − 11 ) 4 − 1 ) ( ( x 2 + 7 x − 11 ) 4 + 1 ) = 0 ((x^2+7x-11)^4-1)((x^2+7x-11)^4+1)=0 (( x 2 + 7 x − 11 ) 4 − 1 ) (( x 2 + 7 x − 11 ) 4 + 1 ) = 0
Since x ∈ R , x\in \R, x ∈ R , then ( x 2 + 7 x − 11 ) 4 + 1 > 0 (x^2+7x-11)^4+1>0 ( x 2 + 7 x − 11 ) 4 + 1 > 0
( x 2 + 7 x − 11 ) 4 − 1 = 0 (x^2+7x-11)^4-1=0 ( x 2 + 7 x − 11 ) 4 − 1 = 0
( ( x 2 + 7 x − 11 ) 2 − 1 ) ( ( x 2 + 7 x − 11 ) 2 + 1 ) = 0 ((x^2+7x-11)^2-1)((x^2+7x-11)^2+1)=0 (( x 2 + 7 x − 11 ) 2 − 1 ) (( x 2 + 7 x − 11 ) 2 + 1 ) = 0
Since x ∈ R , x\in \R, x ∈ R , then ( x 2 + 7 x − 11 ) 2 + 1 > 0 (x^2+7x-11)^2+1>0 ( x 2 + 7 x − 11 ) 2 + 1 > 0
( x 2 + 7 x − 11 ) 2 − 1 = 0 (x^2+7x-11)^2-1=0 ( x 2 + 7 x − 11 ) 2 − 1 = 0
( ( x 2 + 7 x − 11 ) − 1 ) ( ( x 2 + 7 x − 11 ) + 1 ) = 0 ((x^2+7x-11)-1)((x^2+7x-11)+1)=0 (( x 2 + 7 x − 11 ) − 1 ) (( x 2 + 7 x − 11 ) + 1 ) = 0
( x 2 + 7 x − 12 ) ( x 2 + 7 x − 10 ) = 0 (x^2+7x-12)(x^2+7x-10)=0 ( x 2 + 7 x − 12 ) ( x 2 + 7 x − 10 ) = 0
x 2 + 7 x − 12 = 0 o r x 2 + 7 x − 10 = 0 x^2+7x-12=0\ or\ x^2+7x-10=0 x 2 + 7 x − 12 = 0 or x 2 + 7 x − 10 = 0
x 2 + 7 x − 12 = 0 x^2+7x-12=0 x 2 + 7 x − 12 = 0
x 2 + 2 ( 7 2 ) x + ( 7 2 ) 2 − 97 4 = 0 x^2+2(\dfrac{7}{2})x+(\dfrac{7}{2})^2-\dfrac{97}{4}=0 x 2 + 2 ( 2 7 ) x + ( 2 7 ) 2 − 4 97 = 0
( x + 7 2 ) 2 − 97 4 = 0 (x+\dfrac{7}{2})^2-\dfrac{97}{4}=0 ( x + 2 7 ) 2 − 4 97 = 0
x 1 = − 7 2 − 97 2 , x 2 = − 7 2 + 97 2 x_1=-\dfrac{7}{2}-\dfrac{\sqrt{97}}{2}, x_2=-\dfrac{7}{2}+\dfrac{\sqrt{97}}{2} x 1 = − 2 7 − 2 97 , x 2 = − 2 7 + 2 97
x 2 + 7 x − 10 = 0 x^2+7x-10=0 x 2 + 7 x − 10 = 0
x 2 + 2 ( 7 2 ) x + ( 7 2 ) 2 − 89 4 = 0 x^2+2(\dfrac{7}{2})x+(\dfrac{7}{2})^2-\dfrac{89}{4}=0 x 2 + 2 ( 2 7 ) x + ( 2 7 ) 2 − 4 89 = 0
( x + 7 2 ) 2 − 89 4 = 0 (x+\dfrac{7}{2})^2-\dfrac{89}{4}=0 ( x + 2 7 ) 2 − 4 89 = 0
x 3 = − 7 2 − 89 2 , x 4 = − 7 2 + 89 2 x_3=-\dfrac{7}{2}-\dfrac{\sqrt{89}}{2}, x_4=-\dfrac{7}{2}+\dfrac{\sqrt{89}}{2} x 3 = − 2 7 − 2 89 , x 4 = − 2 7 + 2 89
{ − 7 + 97 2 , − 7 + 89 2 , − 7 + 89 2 , − 7 + 97 2 } \bigg\{-\dfrac{7+\sqrt{97}}{2},-\dfrac{7+\sqrt{89}}{2},\dfrac{-7+\sqrt{89}}{2},\dfrac{-7+\sqrt{97}}{2}\bigg\} { − 2 7 + 97 , − 2 7 + 89 , 2 − 7 + 89 , 2 − 7 + 97 }
Comments