1.
Let "x^2+2x-14=u, u\\in\\R"
"=(u-1)(u^4+u^3+u^2+u+1)"
"=(u-1)(u^2(u+\\dfrac{1}{2})^2+\\dfrac{1}{2}u^2+\\dfrac{1}{4}u^2+u+1)"
"=(u-1)(u^2(u+\\dfrac{1}{2})^2+\\dfrac{1}{2}u^2+(\\dfrac{1}{2}u+1)^2)"
"u^2(u+\\dfrac{1}{2})^2+\\dfrac{1}{2}u^2+(\\dfrac{1}{2}u+1)^2>0, u\\not=0, u\\not=-\\dfrac{1}{2}"
"u^2(u+\\dfrac{1}{2})^2+\\dfrac{1}{2}u^2+(\\dfrac{1}{2}u+1)^2=1>0, u=0"
"u^2(u+\\dfrac{1}{2})^2+\\dfrac{1}{2}u^2+(\\dfrac{1}{2}u+1)^2=\\dfrac{1}{8}>0, u=-\\dfrac{1}{2}"
Then
Hence
"x^2+2x-15=0"
"(x+5)(x-3)=0"
"x+5=0\\ or\\ x-3=0"
"x_1=-5, x_2=3"
"\\{-5, 3\\}"
2.
"((x^2+7x-11)^4-1)((x^2+7x-11)^4+1)=0"
Since "x\\in \\R," then "(x^2+7x-11)^4+1>0"
"((x^2+7x-11)^2-1)((x^2+7x-11)^2+1)=0"
Since "x\\in \\R," then "(x^2+7x-11)^2+1>0"
"((x^2+7x-11)-1)((x^2+7x-11)+1)=0"
"x^2+7x-12=0\\ or\\ x^2+7x-10=0"
"x^2+7x-12=0"
"x^2+2(\\dfrac{7}{2})x+(\\dfrac{7}{2})^2-\\dfrac{97}{4}=0"
"(x+\\dfrac{7}{2})^2-\\dfrac{97}{4}=0"
"x_1=-\\dfrac{7}{2}-\\dfrac{\\sqrt{97}}{2}, x_2=-\\dfrac{7}{2}+\\dfrac{\\sqrt{97}}{2}"
"x^2+7x-10=0"
"x^2+2(\\dfrac{7}{2})x+(\\dfrac{7}{2})^2-\\dfrac{89}{4}=0"
"(x+\\dfrac{7}{2})^2-\\dfrac{89}{4}=0"
"x_3=-\\dfrac{7}{2}-\\dfrac{\\sqrt{89}}{2}, x_4=-\\dfrac{7}{2}+\\dfrac{\\sqrt{89}}{2}"
"\\bigg\\{-\\dfrac{7+\\sqrt{97}}{2},-\\dfrac{7+\\sqrt{89}}{2},\\dfrac{-7+\\sqrt{89}}{2},\\dfrac{-7+\\sqrt{97}}{2}\\bigg\\}"
Comments
Leave a comment