f(x)=ax2+bx+c
1. ax2+bx+c=8x−16
2. ax2+bx+c=2x−4
1. ax2+x(b−8)+c+16=0
2. ax2+x(b−2)+c+4=0
x1=x2↔D=0;
D=b2−4ac;
∴
1. (b−8)2−4a(c+16)=0
2. (b−2)2−4a(c+4)=0
1. b2−16b+64−4ac−64a=0
2. b2−4b+4−4ac−16a=0
Subtracting 2. from 1. yields:
−12b+60−48a=0
b−5+4a=0
b=5−4a (∗)
From this and 2. :
(5−4a−2)2−4ac−16a=0
(3−4a)2−4ac−16a=0
9−24a+16a2−4ac−16a=0
16a2−40a+9−4ac=0
−16a2+40a−9=−4ac
From this and (∗) :
Df(x)=b2−4ac=
=(5−4a)2−16a2+40a−9=
=25−40a+16a2−16a2+40a−9=16
Answer: Dmax=16
Comments