Question #147518
Let us consider a quadratic polynomial f(x) such that equation f(x)=8x-16 has exactly one root, and equation f(x)=2x-4 has exactly one root. Find the maximum value of a discriminant of f(x)
1
Expert's answer
2021-01-07T14:30:14-0500

f(x)=ax2+bx+cf(x) = ax^2 + bx + c

1. ax2+bx+c=8x161.\ ax^2 + bx + c = 8x - 16

2. ax2+bx+c=2x42. \ ax^2 + bx + c = 2x - 4


1. ax2+x(b8)+c+16=01. \ ax^2 + x(b -8) + c + 16 = 0

2. ax2+x(b2)+c+4=02.\ ax^2 + x(b - 2) + c + 4= 0


x1=x2D=0;x_1 = x_2 \leftrightarrow D = 0;

D=b24ac;D = b^2 -4ac;

\therefore

1. (b8)24a(c+16)=01. \ (b - 8)^2 - 4a(c +16) = 0

2. (b2)24a(c+4)=02. \ (b - 2)^2 - 4a(c + 4) = 0


1. b216b+644ac64a=01. \ b^2 -16b + 64 - 4ac - 64a = 0

2. b24b+44ac16a=02. \ b^2 -4b + 4 -4ac - 16a = 0


Subtracting 2. from 1. yields:

12b+6048a=0-12b + 60 -48a = 0

b5+4a=0b - 5 + 4a = 0

b=54a ()b = 5 -4a \ (*)

From this and 2. :

(54a2)24ac16a=0(5 - 4a -2)^2 -4ac -16a = 0

(34a)24ac16a=0(3 - 4a)^2 - 4ac -16a = 0

924a+16a24ac16a=09 -24a +16a^2 - 4ac - 16a = 0

16a240a+94ac=016a^2 - 40a + 9 - 4ac = 0

16a2+40a9=4ac-16a^2 + 40a - 9 = -4ac

From this and ()(*) :

Df(x)=b24ac=D_{f(x)} = b^2 - 4ac =

=(54a)216a2+40a9== (5 - 4a)^2 - 16a^2 + 40a - 9 =

=2540a+16a216a2+40a9=16= 25 - 40a + 16a^2 - 16a^2 + 40a - 9 = 16


Answer: Dmax=16D_{max} = 16


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS