"f(x) = ax^2 + bx + c"
"1.\\ ax^2 + bx + c = 8x - 16"
"2. \\ ax^2 + bx + c = 2x - 4"
"1. \\ ax^2 + x(b -8) + c + 16 = 0"
"2.\\ ax^2 + x(b - 2) + c + 4= 0"
"x_1 = x_2 \\leftrightarrow D = 0;"
"D = b^2 -4ac;"
"\\therefore"
"1. \\ (b - 8)^2 - 4a(c +16) = 0"
"2. \\ (b - 2)^2 - 4a(c + 4) = 0"
"1. \\ b^2 -16b + 64 - 4ac - 64a = 0"
"2. \\ b^2 -4b + 4 -4ac - 16a = 0"
Subtracting 2. from 1. yields:
"-12b + 60 -48a = 0"
"b - 5 + 4a = 0"
"b = 5 -4a \\ (*)"
From this and 2. :
"(5 - 4a -2)^2 -4ac -16a = 0"
"(3 - 4a)^2 - 4ac -16a = 0"
"9 -24a +16a^2 - 4ac - 16a = 0"
"16a^2 - 40a + 9 - 4ac = 0"
"-16a^2 + 40a - 9 = -4ac"
From this and "(*)" :
"D_{f(x)} = b^2 - 4ac ="
"= (5 - 4a)^2 - 16a^2 + 40a - 9 ="
"= 25 - 40a + 16a^2 - 16a^2 + 40a - 9 = 16"
Answer: "D_{max} = 16"
Comments
Leave a comment