l e t x + 1 x = k , k − i n t e g e r n u m b e r x 2 + 1 x = k x 2 − k x + 1 = 0 x = k ± k 2 − 4 2 l e t x 2 + 5 x = n x 2 + 5 x − n = 0 x = − 5 ± 25 − 4 n 2 k ± k 2 − 4 2 = − 5 ± 25 − 4 n 2 k ± k 2 − 4 = − 5 ± 25 − 4 n which equations have 3 integer solutions k = − 5 , n = 1 k = − 2 , n = 4 k = 2 , n = − 6 x = 1 , x = − 1 , x = − 5 ± 21 2 S = 1 2 + ( − 1 ) 2 + ( − 5 + 21 2 ) 2 + ( − 5 − 21 2 ) 2 = = 1 + 1 + ( 25 + − 10 21 + 21 + 25 + 10 21 + 21 4 ) = 25 a n s w e r : 25 let \ x+\dfrac{1}{x} = k , k- integer\ number\\
\dfrac{x^2+1}{x} = k\\
x^2-kx+1 = 0\\
x = \dfrac{k \pm \sqrt{k^2-4}}{2}\\
let \ x^2+5x = n\\
x^2+5x-n = 0\\
x = \dfrac{-5 \pm \sqrt{25-4n}}{2}\\
\dfrac{k \pm \sqrt{k^2-4}}{2} = \dfrac{-5 \pm \sqrt{25-4n}}{2}\\
k \pm \sqrt{k^2-4} = -5 \pm \sqrt{25-4n}\\
\text{which equations have 3 integer solutions} \\
k = -5 , n = 1\\
k = -2, n = 4\\
k = 2, n = -6\\
x = 1, x=-1 , x = \dfrac{-5 \pm \sqrt{21}}{2}\\
S= 1^2+(-1)^2 + (\dfrac{-5 + \sqrt{21}}{2})^2 +(\dfrac{-5 - \sqrt{21}}{2})^2 = \\
= 1+1 +(\dfrac{25 + -10\sqrt{21} +21 +25+10\sqrt{21}+21}{4}) = 25
\\answer: 25 l e t x + x 1 = k , k − in t e g er n u mb er x x 2 + 1 = k x 2 − k x + 1 = 0 x = 2 k ± k 2 − 4 l e t x 2 + 5 x = n x 2 + 5 x − n = 0 x = 2 − 5 ± 25 − 4 n 2 k ± k 2 − 4 = 2 − 5 ± 25 − 4 n k ± k 2 − 4 = − 5 ± 25 − 4 n which equations have 3 integer solutions k = − 5 , n = 1 k = − 2 , n = 4 k = 2 , n = − 6 x = 1 , x = − 1 , x = 2 − 5 ± 21 S = 1 2 + ( − 1 ) 2 + ( 2 − 5 + 21 ) 2 + ( 2 − 5 − 21 ) 2 = = 1 + 1 + ( 4 25 + − 10 21 + 21 + 25 + 10 21 + 21 ) = 25 an s w er : 25
Comments